HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/ME-101/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: ME-101

ENGINEERING MECHANICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the $10 \times 1 = 10$ following:
 - The principal stresses at a point in an elastic material are 60 N/nm² tensile, and 50 N/nm² compressive. Calculate the volumetric strain. Take $E = 100 \times 10^3 \text{ N/mm}^2 \text{ and } \mu = 0.3.$

(a)
$$1.6 \times 10^{-4}$$

b)
$$1.8 \times 10^{-4}$$

c)
$$1.2 \times 10^{-4}$$
 d) 1.0×10^{-4} .

d)
$$1.0 \times 10^{-4}$$

Turn over

www.makautonline.com

CO/ D. LECTI/ODD DEM/ DEM-1/ME-101/2010-1/

HTTP://WWW.MAKAUT.COM

Two forces of 100 N and 150 N are acting simultaneously at a point. What is the resultant of these two forces, if the angle between them is 45°?

_ b) 222

cì 232

- 242.
- tti) A force of 15 N is applied at an angle of 60° to the edge of a 0.8 m wide door. Find the moment about the hinge of that door.
 - 10 N-m

10.2 N·m

- 10·4 N-m
- 10.6 N-m.
- iv) Null vector is known as
 - negative vector
- unit vector
- c) zero vector
- none of these.
- Centre of gravity of solid cone lies on the axis at the height
 - a) 1/4 th of the total height above the base
 - b) 1/3 rd of the total height above the base
 - 1/2 of the total height above the base
 - 3/8 th of the total height above the base.

1/10151

2

1/10151

The differential equation of a free falling body is

a)
$$x = 0, y = 0$$
 b) $x = c, y = g$

b)
$$x = c, y = g$$

c)
$$x = 0, y = g$$

vii) The velocity of a body on reaching the ground from a height h, is given by

a)
$$v = 2gh$$

b)
$$v = 2gh^2$$

c)
$$v = \sqrt{2gh}$$
 d) $v = \frac{h^2}{2g}$.

d)
$$v = \frac{h^2}{2q}$$

viii) The time variation of the position of a particle in rectilinear motion is given by $X = 2t^3 + t^2 + 2$. If 'v' is the velocity and 'a' the acceleration of the particle in consistent units, the motion started with

(a)
$$v = 0$$
, $a = 0$ b) $v = 0$, $a = 2$

b)
$$v = 0, a = 2$$

c)
$$v = 2$$
, $a = 0$

c)
$$v = 2, a = 0$$
 d) $v = 2, a = 2$

The maximum strain energy that can be stored in a body is known as

- impact energy
- resilience
- proof resilience CI
- modulus of resilience.

If the momentum of a body is doubled, its kinetic energy will

- increase by two times
- increase by four times
- remain same
- get halved.

Three forces $\sqrt{3}P$, P and 2 P acting on a particle are in equilibrium. If the angle between the first and second be 90°, the angle between the second and third will be

30°

b) 60°

120°

150°.

xii) The dot product of two orthogonal vectors is

- one
- no definite value
- zero
- none of these.

3

HTTP://WWW.MAKAUT.COM

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

What do you mean by a free body diagram? Draw the FBD from the given fig.1

Fig. 1

Locate the centroid of the shaded area as shown in Fig.2. All the dimensions are in mm.

[Turn over

www.makautonline.com HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/ME-101/2016-17

A block A of weight 100 n is placed on an inclined plane which makes an angle 30° to the horizontal, an extensible string is connected to block A and is passed over a smooth pulley. Another block B is hung freely at the other end of the string as shown in fig. 3. Determine the range of weight of block B, such that the block A has motion neither up the plane nor down the plane. Take $\mu = 0.3$ for all contact surfaces.

Fig.3

- Moment of a certain force abut the point P(3, 7, -2) is (101-8j+40k) kN·m. Find the moment of the same force about the line PQ. Co-ordinate of Q is (5, 8, 1).
- The acceleration of a particle along a straight line is given by the equation $a = 4 - \frac{t^2}{\Omega}$. If the particle starts with zero initial velocity from a position x = 0, find (i) its velocity after 6 sec and (ii) distance travelled in 6 sec.

5

HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/ME-101/2016-17

7. Determine the reactions at supports A and C in the structure shown in the Fig. 4.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

8. a) A roller of radius r = 304·8 mm and weight Q = 2225 N is to be rolled over a curb of height h = 152·4 mm by a horizontal force P applied to the end of a string wound around the circumference of the roller. Fig. 5. Find the magnitude of P required to start the roller over the curb. There is sufficient friction between the roller surface and the edge of the curb to prevent slip at A.

Fig. 5

1/10151 7 { Turn over

www.makautonline.com HTTP://www.makaut.com

b) Two beams AB and DE are arranged and supported as shown in Fig. 6. Find the magnitude of the reaction RE at E due to the force P = 890 N applied at B as shown.

Fig. 6

- Two equal loads of 2500 N are supported by a flexible string ABCD at points B and D as shown in the Fig. 7. Find the tensions in the portions AB. BC and CD of the string.
 - b) Two blocks connected by a horizontal link AB are supported on two rough planes as shown in fig. 8. The coefficient of friction for block A on the horizontal plane is μ = 0.4. The angle of friction for block B on the inclined plane is 15°. What is the smallest weight of the block A for which equilibrium will exist?

1 /10151

Fig. 8

HTTP://WWW.MAKAUT.COM

A steel bar of 20 mm diameter is loaded as shown in fig. 9. Determine the stresses in each part and the total elongation. Take E = 2 x 10⁵ N/nm².

Fig. 9

b) A force F = 50 l + 75 l + 100 k, acts through E as shown in Fig.10. Determine the moment of force about x, y and z axes respectively.

Fig. 10

11. a) A rope AB is attached at B to a small block and passes over a small pulley C so that its free end A hangs 5m above the ground as shown in the Fig. 11. The end A is moved horizontally following a

www.makautonline.com HTTP://www.mAKAUT.COM

straight line with uniform velocity V_0 . Establish a relationship between velocities of the block with time.

Fig. 11

b) Two blocks A and B Fig. 11 weighing $W_A = 45$ N and $W_B = 90$ N respectively are placed side by side on an inclined plane having inclination angle $\alpha = 30^\circ$ as shown in Fig.12 so that they can slide together. If the coefficient of friction between the blocks and the plane are $\mu_A = 0.15$ and $\mu_B = 0.30$ respectively, find the contact thrust existing between the blocks under motion.

Fig. 12

8

12. a) Block B has rightward velocity of 1.2m/s as shown in Fig.13. Find the velocity of the block A. 8

Fig. 13

b) A shot is fired with a bullet with an initial velocity of 40 m/sec from a point 20 m in front of a vertical wall 10 m high as shown in Fig. 14. Find the angle of projection with horizontal to enable the shot to just clear the wall.

