

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: IT-601

DATABASE MANAGEMENT SYSTEM

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Let R(X, Y) and S(Y) be two relations as given below:

R			
X	Y		
x1	y1		
x1	y2		
x2	y2		
x2	у3		
x 3	y2		
х3	y1		

S		
	Y	
	y2	
	y3	

What would be the result of the relational algebra : $R \div S$?

a)
$$X = \{x_1, x_2, x_3\}$$
 b) $X = \{x_1\}$

c)
$$X = \{x_2\}$$
 d) $X = \{x_3\}$.

6/60104

[Turn over

CS/B.TECH/IT/EVEN/SEM-6/IT-601/2015-16

- ii) In E-R diagram double lines indicate
 - a) Total participation b) Multiple participation
 - c) Cardinality N
- d) None of these.
- iii) The keyword to eliminate duplicate rows from the query result in SQL is
 - a) DISTINCT
 - b) NO DUPLICATE
 - c) UNIQUE
 - d) Automatically eliminated.
- iv) In SQL, testing whether a sub-query is empty is done using
 - a) DISTINCT
- b) ISEMPTY

c) EXISTS

- d) ISNULL.
- v) Precedence graphs help to find a
 - a) Serializable schedule
 - b) Recoverable schedule
 - c) Deadlock free schedule
 - d) Cascade less schedule.
- vi) If a transaction T has obtained an exclusive lock on item O, then T can
 - a) read Q
 - b) write Q
 - c) write Q but not read Q
 - d) both read and write Q.

- vii) A functional dependency of the form $X \rightarrow Y$ is trivial if
 - $X \subseteq Y$

b) $Y \subseteq X$

 $X \subset Y$

- d) $Y \subset X$.
- viii) The $FDA \rightarrow B$, $DB \rightarrow C$ implies
 - a) $DB \rightarrow A$
- b) $A \rightarrow C$
- $B \to A$ d) $DA \to C$.
- The drawback of shadow paging technique is
 - Commit overhead b) Data fragmentation
 - Garbage collection d) All of these.
- Which of the following is true for relational calculus?
 - $\forall \times (P(x)) \equiv \neg (\exists x) (\neg P(x))$
 - $\forall \times (P(x)) \equiv \neg (\exists x) (P(x))$
 - $\forall \times (P(x)) \equiv (\exists x) (\neg P(x))$
 - $\forall \times (P(x)) \equiv (\exists x) (P(x)).$
- Wait-for graph is used for
 - deadlock prevention
 - deadlock detection bì
 - detecting view serializability c)
 - detecting conflict serializability.

CS/B.TECH/IT/EVEN/SEM-6/IT-601/2015-16

GROUP - B (Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

You are given an initial table as follows:

Sroll	Sname	Saddress	Paper_id
111	S1	SaltLake	CS601
			CS602
112	S2	DumDum	CS601
		,	CS602
			CS605A

Paper_name	Author	S_grade
DBMS	Navate	Α
os	Galvin	В
DBMS	Navate	E
os	Galvin	Α
M.M.	Pakhira	В

Assume that there is only one author for a particular paper. Draw the FD diagram and normalize the table up to 3 NF.

- Describe the following phases of database design:
 - Mini-word or UoD
 - Functional requirements and Data requirements
 - Functional analysis C)
 - d) Conceptual design and conceptual schema
 - Physical design and physical schema.
- Differentiate between the following:
 - Partial key and Primary key
 - Multi-valued attributes and Composite attributes
 - Subclasses with disjoint constraints and overlapping constraints. 2 + 1 + 2

- i) Explain Right outer join with an example.
 - ii) Explain ACID property.

2 + 3

- 6. i) What is view? Give one advantage of view.
 - ii) Write a PL/SQL code to calculate the total salary of first n records of emp(eno, ename, salary) table. The value of n is passed to cursor as parameter.

(1+1)+3

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. i) The following relational schema is given:

Employee(eno, name, age, mgr_no, dno, salary)

Dept (dno, dname)

Work_on (eno, pno)

Answer the following queries as directed:

- a) Find the employee names who are involved in "Web Application" project. (Relational algebra)
- b) Find the employee names whose manager name is "Mr. M. Ghosh" (SQL)
- Find all employees along with their department name and project name. (Tuple relational calculus)
- find the employee names who are involved in all the projects. (SQL or Relational algebra)
- e) Find the 3rd highest salary (SQL). 5×2
- ii) Prove the following by Armstrong's axioms: 2 $X \rightarrow Y \text{ and } WY \rightarrow ZFWX \rightarrow Z$
- iii) What is weak entity? How such type of entity is represented in database table? What do you mean by discriminator? Give example.

6/60104

5

[Turn over

CS/B.TECH/IT/EVEN/SEM-6/IT-601/2015-16

 i) Consider a relation R (ABCDEFGHIJ) which is initially in 1 NF with functional dependencies

$$F = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}.$$

- a) What is the key of R?
- b) Decompose it into 2 NF and then 3 NF. 1 + 4
- ii) Consider a relation R (ABCD) with FDs

$$F = \{AC \rightarrow D, BC \rightarrow D, A \rightarrow B, B \rightarrow A\}$$

- a) Is this relation in 3 NF?
- b) Check for it to be in BCNF.

Justify your answer and decompose the table if required in both the above cases.

iii) You are given the following table:

Vehicle (reg_no, make, colour)

Person (eno, name, address)

Owner (eno, reg_no)

Consider the following query:

SELECT eno, name, reg_no FROM Person, Owner

WHERE Person.eno = Owner.eno and Person.name

= 'Raju'

- a) Draw the initial query tree.
- b) Optimize the query and draw the optimized query tree.

6/60104

6

- 9. i) Differentiate between Serial schedule and Serializable schedule.
 - ii) Let T_1 , T_2 and T_3 be transactions that operate on the same data items A, B and C. Let r_1 (A) means that T_1 reads AI, w_1 (A) means that T_1 writes A and so on for T_2 and T_3 . Consider the following schedule:
 - $$\begin{split} S_1: r_2 &(C), \ r_2 &(B), \ w_2 &(B), \ r_3 &(B), \ r_3 &(C), r_1 &(A), \ w_1 &(A), \\ w_3 &(B), \ w_3 &(C) \ r_2 &(A), \ r_1 &(B), \ w_1 &(B), \ w_2 &(A). \end{split}$$

Is the schedule serializable? If yes, find the equivalent serial schedule. 3 + 1

- iii) Show with proper example that 'view serializability checking is more powerful than conflict serializability checking'.
- iv) What is dirty read problem? Explain the difference between dirty read and unrepeatable read problem with example. 2 + 3
- 10. i) How can you differentiate between the process recovery and restoration? Give example. 2 + 2
 - ii) What is integral backup? Explain redo and undo log.1 + 3
 - iii) Why do we use index in a database table, although we have candidate key to identify a row uniquely?

 What is sparse index?

 2 + 1
 - iv) Explain the process of checkpoint based recovery with suitable example.

CS/B.TECH/IT/EVEN/SEM-6/IT-601/2015-16

11. i) Let the relation R (A_1 , A_2 , A_3 , A_4 , A_5) is decomposed into

$$R_1(A_1,\;A_2,\;A_3,\;A_5),$$

$$R_2(A_1, A_3, A_4),$$

$$R_3(A_4, A_5)$$

with the functional dependencies

$$FD_1: A_1 \rightarrow A_3 A_5$$

$$FD_2: A_5 \rightarrow A_1 A_4$$

$$FD_3: A_3 A_4 \rightarrow A_2.$$

Check whether the above decomposition is lossless or lossy.

3

ii) Consider the relation R (A, B, C) with functional dependencies

$$F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}.$$

Compute the canonical cover for F.

- iii) What do you mean by shared and exclusive lock? Explain lock up-gradation. 2 + 1
- iv) Explain 'Two Phase Locking' protocol for concurrent transactions. What do you mean by transaction deadlock?
 4+2