

Invigilator's Signature : \qquad

CS/B.Tech(CSE/IT)/SEM-3/M-301/2009-10 2009 MATHEMATICS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) If A and B are any two events such that $P(A \cap B)=\frac{1}{2}$,$P\left(A^{C} \cap B^{C}\right)=\frac{1}{3}$ and $P(A)=P(B)=p$, then the value of p is
a) $\frac{7}{12}$
b) $\frac{5}{6}$
c) $\frac{1}{3}$
d) $\frac{1}{2}$.
ii) If the exponential distribution is given by the probability density function

$$
f(x)=e^{-x}, 0<x<\infty,
$$

then the mean of the distribution is
a) 1
b) 3
c) $\frac{1}{3}$
d) 4 .

CS/B.Tech(CSE/IT)/SEM-3/M-301/2009-10
iii) The variance of the binomial distribution $B(n, p)$ is
a) $n p$
b) $n p q$
वfincountin
c) $(n-1) p$
d) $n(p-1)$.
iv) The mean of a Poisson distribution with parameter μ is
a) μ
b) μ^{2}
c) $-\mu$
d) $-\mu^{2}$.
v) If A and B are any two events, then
a) $\quad P(A+B)=P(A)+P(B)$
b) $\quad P(A+B)=P(A)+P(B)-P(A B)$
c) $\quad P(A+B)=P(A)+1$
d) $P(A+B)=1-P(B)$.
vi) If A and B are any two events such that A is the subset of B, then
a) $\quad P(A)=P(B)$
b) $\quad P(A) \leq P(B)$
c) $\quad P(A) \geq P(B)$
d) $\quad P(A)=P(B)=1$.
vii) The value of $\lim _{z \rightarrow \pi / 2}\left(\frac{\sin z}{z}\right)$ is
a) $\pi / 2$
b) $2 / \pi$
c) π
d) 1 .
viii) If $b_{y x}, b_{x y}$ be the regression coefficients and r be the correlation coefficient, then $b_{y x} \times b_{x y}$ is equal to
a) r
b) r^{2}
c) $\frac{1}{r}$
d) $\frac{1}{r^{2}}$
ix) The power of a test in case of testing of hypothesis is
a) $\quad 1-P($ Type I Error)
b) $\quad 1-P($ Type II Error $)$
c) $\quad 1-P($ Type I Error) $P($ Type II Error)
d) $\quad P$ (Type I Error) P (Type II Error) .
x) The standard deviation of a sample mean for SRSWR is
a) $\quad \sigma^{2} / n$
b) σ / \sqrt{n}
c) $\quad \sigma / n$
d) n.
xi) The maximum likelihood estimate is a solution of the equation
a) $\frac{\partial \mathrm{L}(\theta)}{\partial \theta}=0$
b) $\frac{\partial \mathrm{L}(\theta)}{\partial \theta}=\mathrm{constant}$
c) $\frac{\partial \mathrm{L}(\theta)}{\partial \theta}=\theta$
d) none of these.
xii) A statistic t is said to be an unbiased estimator of a population parameter θ when
a) $E(t)=\theta$
b) $E\left(t^{2}\right)=\theta$
c) $\quad E\left(t^{2}\right)=[E(\theta)]^{2}$
d) $[E(t)]^{2}=E\left(t^{2}\right)$.
xiii) The probability $P(a<x \leq b)$ (where $F(x)$ is the distribution function of the random variable x) is given by
a) $\quad F(b)-F(a)$
b) $\quad F(b)+F(a)$
c) $\quad F(a)-F(b)$
d) $\quad F(a) F(b)$.

CS/B.Tech(CSE/IT)/SEM-3/M-301/2009-10
2. If A and B are two events such that $P\left(A^{C} \cup B^{C}\right)=5 / 6$, $P(A)=1 / 2$ and $P\left(B^{C}\right)=2 / 3$, show that A and B are independent.
3. A random variable X has the following probability function :

| $X=-2-1$ |
| :--- | | | 0 | 1 | 2 | 3 |
| :--- | :--- | :---: | :---: | :---: |
| $P(X)=$ | $0 \cdot 1$ | k | $0 \cdot 2$ | $2 k$ |
| $0 \cdot 3$ | $3 k$ | | | |

i) Calculate k
ii) Find $P(X<2), P(X \geq 2), P(-2<X \geq 2)$.
4. If the chance of being killed by flood during a year is $1 / 3000$, use Poisson distribution to calculate probability that out of 3000 persons living in a village, at least one will die in flood in a year.
5. A random sample with observations $65,71,64,71,70,69$, 64, 63, 67, 68 is drawn from a normal population with standard deviation $\sqrt{ } 7 \cdot 056$. Test the hypothesis that the population mean is 69 at 1% level of significance.
[Given : $P(0<Z<2.58)=0.495$].
6. If x follows a Normal Distribution with mean 12 and variance 16 , find $P(x \geq 20)$.

$$
\text { [Given: } \int^{2} 1 / \sqrt{ } 2 \pi e^{-1 / 2 t^{2}} \mathrm{~d} t=0.977725 \text {] }
$$

7. Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n.

8. a) A random variable follows binomial distribution with mean 4 and standard deviation $\sqrt{ } 2$. Find the probability of assuming non-zero value of the variable.
b) Find the mathematical expectation of the number of the points obtained in a single throw of an unbiased die. 8
9. a) A bag contains 7 red and 5 white balls. 4 balls are drawn at random. What is the probability that (i) all of them are red (ii) two of them be white and two red? $\quad 7$
b) If a random variable follows Poisson Distribution such that $P(1)=P(2)$,
find (i) mean of the distribution
(ii) $P(4)$.
10. a) State "Central Limit Theorem".

A random variable x has the function $e^{-x}, x \geq 0$.
Show that Tchebycheff's inequality gives $P[|X-1|>2]<\frac{1}{4}$ and show that actual probability is e^{-3}. 8
b) If T is an unbiased estimator of θ, show that $\sqrt{ } T$ is biased estimator of θ.

CS/B.Tech(CSE/IT)/SEM-3/M-301/2009-10
11. a) A pair of dice is thrown. Find the probability of getting a sum of 7 , when it is known that the digifin the first die is greater than that of the second.
b) The manufacturing process of an article consists of two parts x and y. The probabilities of defect in parts x and y are 10% and 15% respectively. What is the probability that the assembled product will not have any defect?
c) The probabilities of solving a problem by three students A, B and C are $\frac{2}{7}, \frac{3}{8}$ and $\frac{1}{2}$ respectively. If all of them try independently, find the probability that the problem is solved.
12. a) The probability density function of a continuous distribution is given by $f(x)=\frac{3}{4} x(2-x)$. Compute mean and variance of the distribution.
b) The mean weight of 500 male students at a certain college is 150 lbs and the standard deviation is 15 lbs . Assuming that the weight is normally distributed find how many students weigh
i) between 120 and 155 lbs
ii) more than 155 lbs .
[Given $\phi(2)=0.9772 ; \phi(0.33)=0.6293$]
13. a) A survey of 320 families with 5 children each revealed the following distribution :

No. of boys	5	4	3	2	1	0
No. of girls	0	1	2	3	4	5
No. of families	14	56	110	88	40	12

Is the result consistent wtih the hypothesis that male and female births are equally probable ?
[Given : $X^{2}{ }_{\text {Tab, } 5 \%}=11.07$ at 5 degrees of freedom]
b) Intelligence tests on two groups of boys and girls gave the following results :

	Mean	SD	N
Boys	70	20	250
Girls	75	15	150

Is there any significant difference in the mean scores obtained by boys and girls?

