

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
$10 \times 1=10$
i) What range of decimal values can be represented by a four-digit hexadecimal number ?
a) 0 to 1024
b) 0 to 4096
c) 0 to 8192
d) 0 to 65535
ii) The OR operation can be produced with
a) two NOR gates
b) three NAND gates
c) four NAND gates
d) both (a) and (b).

CS/B.TECH(CSE/IT)-(OLD)/SEM-3/EC-312/2011-12

iii) Simplified form of Boolean expression $(A+\bar{B}+\bar{A} B) C$ is
a) 1
b) 0
c) C
d) \bar{C}.
iv) A four-variable Karnaugh map has
a) 8 min -terms
b) 16 min -terms
c) 32 min -terms
d) 24 min -terms.
v) For an edge-triggered D flip-flop
a) a change in the state of the flip-flop can occur only at a clock pulse edge
b) the state that flip-flop goes to depend on the D input
c) the output follows the input a each clock pulse
d) all of these.
vi) A Full Adder can be constructed by using
a) 2 AND gates, 3 XOR gates and an OR gates
b) 3 AND gates, 2 XOR gates and an OR gates
c) 3 AND gates, 2 XOR gates and 2 OR gates
d) 2 AND gates, 2 XOR gates and 3 OR gates.

a) 13 flip-flops
b) 3 flip-flops
c) 4 flip-flops
d) synchronous clocking.
viii) The fastest Logic family is
a) TTL
b) ECL
c) IIL
d) RTL.
ix) A unique operating feature of ECL circuit is its
a) very high speed
b) high power dissipation
c) series base resistor
d) compatibility with other logic families.
x) Which of the following devices selects one of the several inputs and transmits to a single output ?
a) Decoder
b) Multiplexer
c) Demultiplexer
d) Counter
xi) What is the NAND gate IC No.?
a) 7400
b) 7402
c) 7404
d) none of these.
[Turn over

CS/B.TECH(CSE/IT)-(OLD)/SEM-3/EC-312/2011-12
xii) Which of the following is reflected code?
a) 8421
b) Excess
c) Gray
d) ASCII.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Implement a full adder circuit using decoder.
3. a) What is don't care ?
b) Minimize following expression using K-Map \& realize the simplified expression using NAND gate only :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,2,3,5,6,11,12)+\mathrm{D}(7,8,10,14) \quad 1+4$
4. a) Why is Multiplexer called Data Selector ?
b) Implement the following expression using 8: 1 Multiplexer :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=m(0,1,3,4,8,9,15)$
5. Do the following subtraction using 1's and 2's eomplement methods and show that both the answers are same : $(37)_{10}-(24)_{10}$

$$
2 \frac{1}{2}+2 \frac{1}{2}
$$

6. Design an Octal to Binary Encoder where all outputs are active high.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) What is meant by duality of Boolean algebra ? Simplify the following Boolean algebra using K-map and realize the simplified function using NOR gates only.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi_{M}(1,2,3,8,10,11,14)+\sum_{d}(7,15)$
b) Construct a 5×32 decoder with four 3×8 decoders and a 2×4 decoder. Show bock diagram only.
c) Design a full-subtractor with two half subtractor and a logic gate.

$$
(2+4+2)+5+2
$$

CS/B.TECH(CSE/IT)-(OLD)/SEM-3/EC-312/2011-12

8. a) What is the difference between asynchrongus and synchronous counters ? Design a MOD-10 synchronous binary Up-counter using T flip-flops and other necessary logic gates.
b) What are the four basic types of shift register ? Draw the diagram of a 4-bit bi-directional shift register.

$$
(2+7)+(2+4)
$$

9. a) Design a 4-bit BCD to Excess-3 Converter circuit.
b) Design a 4-bit Full Adder circuit using Half Adders and OR gate.
c) What is Controlled Inverter? $7+6+2$
10. a) Implement the following expressions using PAL :

$$
\mathrm{Y} 1=\mathrm{ABC}+\mathrm{AC}
$$

$$
\mathrm{Y} 2=\mathrm{ABC}+\mathrm{AB}
$$

b) Implement Ex-Or gate using NAND gate and NAND gate
 using NOR gate.
c) What is prime implicant? $7+(3+3)+2$
11. a) How do we convert J-K Flip-Flop to T Flip-Flop and J-K Flip-Flop to D Flip-Flop.
b) Draw the circuit diagram of Master/Slave JK Flip-Flop and explain the operation of the circuit.
12. Write short notes on any three of the following :
a) EEPROM
b) Dual Slope ADC
c) Parity Generator \& Checker
d) Parallel in Serial Out (PISO) shift register
e) CMOS Logic.

