	Uiteah
Name:	
Roll No.:	A Descript Name of Sail Explored
Invigilator's Signature :	

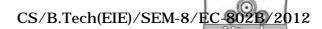
EMBEDDED SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

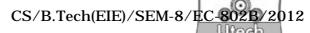
GROUP - A (Multiple Choice Type Questions)


- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) Which chip has a large number of arrays with each element having fusible links?
 - a) GPP
 - b) ASSP
 - c) FPGA
 - d) Register.

8350 [Turn over

- ii) The main function of RTOS is
 - a) Real time task scheduling and interrupt latency control
 - b) Device management
 - c) Process management
 - d) Memory management.
- iii) Which one of the following is used as an additional processing unit for running the application specific tasks in place of processing using embedded software?
 - a) Micro-controller
 - b) DSP
 - c) FPGA
 - d) ASSP.
- iv) Which of the following has the highest "storage performance"?
 - a) DRAM

- b) SRAM
- c) OTP ROM
- d) Masked ROM.


8350 2

v)		ch of the follow OSs?	ving are	commercially claimed	
	a)	Linus	b)	Windows CE	
	c)	Windows NT	d)	Sun Solaris.	
vi)	Whi	ch of the followin	ng schedu	ling algorithms checks	
	the	rate of occurrence	of the tas	k ?	
	a)	DMA	b)	EDF	
	c)	Co-operative	d)	All of these.	
vii)	Which is the heart of an embedded system?				
	a)	Interrupt controll	er b)	Processor	
	c)	I/O devices	d)	Power supply.	
viii)	A m	odel in which the	ere are fin	ite states, which have	
	give	n assets of inputs	s, or state	e changes according to	
	the state transition function is				
	a)	FSM	b)	ADFG	
	c)	DFG	d)	UML.	
8350			3	[Turn over	

ix)	A	small scale embed	ded	system is designed			
	with bit micro-controller.						
	a)	8	b)	8 or 16			
	c)	32	d)	64.			
x)	DMA modules can communicate with CPU through						
	a)	interrupt	b)	cycle stealing			
	c)	branch instruction	d)	none of these.			
xi)	Object code is						
	a)	input of assembler					
	b)	output of assembler					
	c)	intermediate code					
	d)	none of these.					
xii)	A CPU has 16 bit program counter. This means CPU can have address memory locations.						
	a)	16K	b)	32K			
	c)	64K	d)	256K.			

c)

GROUP - B

(Short Answer Type Questions.)

Answer any three of the following.

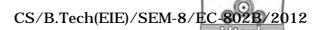
- 2. Compare RISC and CISC architectures.
- 3. Describe the Moore's law in embedded systems.
- Compare Von-Neumann and Harvard architectures of a processor based system.
- 5. How does a microprocessor differ from a micro-controller?
- 6. Describe the different types of memories used in an embedded system.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define RTOS.
 - b) What are different utilities in mail box, pipe and queue in RTOS?
 - c) What is shared data problem? Briefly discuss the solution to overcome this problem.
 - d) What is priority inversion problem?
 - e) Describe in brief the structure of RTOS.


$$1 + 4 + 5 + 2 + 3$$

- 8. a) Describe the different components of an embedded system.
 - b) What are the specific features of an embedded system processor?
 - c) How will you classify an embedded system? 5 + 5 + 5
- 9. a) What is virtual memory? What could be the maximum size of virtual memory? Justify.
 - b) What is parallel processing?
 - c) What is flash memory?
 - d) What is vector processing?
 - e) What is the function of 'BUS' in computer architecture?

$$4 + 3 + 2 + 2 + 4$$

- 10. a) Highlight the major issues of Pipe-lining related to processor design trade-offs between CISC and RISC based on the dynamic usage statistics of instructions on a functional classification in a typical application program.
 - b) CISC processors have better code density than the RISC processors. Explain in a bit detail with reasons.

10 + 5

11. Write short notes on any *three* of the following:

- a) Synchronous mode of data transfer
- b) Designing memory interfacing
- c) Designing I/O ports
- d) PLD
- e) FPGA
- f) Device driver
- g) System on chip (SOC) design.