	Utech
Name:	A
Roll No.:	In Spanier Williams Suige Studies
Invigilator's Signature :	

CS / B.TECH (EIE-NEW) / SEM-7 / EI-702 / 2010-11 2010-11

PROCESS CONTROL-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) A real sampler when sampling an analog signal acts as an / a
 - a) impulse modulator
 - b) pulse amplitude modulator
 - c) pulse width modulator
 - d) pulse code modulator.
- ii) The output of a closed-loop sampled-data system is given by $y(z) = \frac{z(z+0.2)}{(z-0.2)(z-1)}$. The steady-state output is
 - a) 0

b) 1 25

c) 15

d) infinite.

7205 [Turn over]

CS / B.TECH (EIE-NEW) / SEM-7 / EI-702 2010-1

iii) The minimum sampling interval required to avoid aliasing for the analog signal

 $x(t) = 5\sin(200\pi)t + 3\cos(100\pi)t$ is

- a) 10 msec
- b) 5 msec

c) 2 5 sec

- d) 20 sec.
- iv) pH control is
 - a) linear

- b) non-linear
- c) both (a) and (b)
- d) none of these.
- v) Fuzzy concept applies to the imprecision in
 - a) calculation
- b) logic

c) data

- d) none of these.
- vi) To start reconstructing the continuous-time counterpart from its sampled values, the number of past values required for an *n*-th order hold device is
 - a) n-2

b) n-1

c) n

- d) n + 1.
- vii) The selection of sampling rates can be based on the bandwidth of the closed-loop
 - a) 40 to 50 times of bandwidth
 - b) 10 to 30 times of bandwidth
 - c) 50 to 60 times of bandwidth
 - d) 1 to 10 times of bandwidth.

- a) component based design
- b) structural based design
- control based design c)
- d) communication based design.
- Ideal sampler output for a continuous signal f(t), for a ix) sampling period T can be represented as

a)
$$f^*(t) = \sum_{k=0}^{\infty} f(KT) \partial_T(KT)$$

b)
$$f^*(t) = \sum_{k=0}^{\infty} f(kt)$$

c)
$$f^*(t) = \sum_{k=0}^{\infty} f(KT) \partial_T (t - KT)$$

d)
$$f^*(t) = \sum_{k=0}^{\infty} \partial_T (t - KT)$$
.

- The w transform is given by x)
- w = [ln(z)]/T b) w = T[ln(z)]
- z = [ln(w)]/T d) z = T[ln(w)].
- For a sampled-data system to be stable, the z-domain xi) poles must be
 - within the unit circle a)
 - outside the unit circle b)
 - c) exactly on the perimeter of the unit circle
 - anywhere in the z-plane. d)

- a)
- $f_1(t) = f(t pT)$ b) $f_1(t) = f(te^{-pT})$
- c)
- $f_1(t) = f(t + pT)$ d) $f_1(t) = f(te^{pT})$.

xiii) Network protocol used in multi-drop DCS communication is

- Token bus a)
- b) Token ring
- both (a) and (b) c)
- TCP / IP. d)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Find $E^*(s)$ for the following function using the Direct method, 2. i.e. from the time sequence. Express $E^*(s)$ in closed form.
 - $e(t) = e^{-at}$ a)

b)
$$e(t) = \frac{e^{-2T}}{(S-a)}$$
.

What is the relationship between the answer to part (b) c) and the answer to part (c)? 2 + 2 + 1

Hints: (i) $E * (S) = \frac{1}{|1 - e^{(a-s)T}|} |e^{(a-s)T}| < 0$

(ii)
$$E * (S) = \frac{e^{-2TS}}{[1 - e^{(a-s)T}]}$$

7205

CS / B.TECH (EIE-NEW) / SEM-7 / EI-702 2010-1:

- 3. What is a sampler with zero order hold (*ZOH*)? Derive the transfer function of *ZOH* in *S*-domain and *Z*-domain.
- 4. What are the different International Field Bus standards for DCS? What is meant by data highway? Why is fiber optic more attractive for data highway design?
 3 + 2
- What is Nyquist frequency? Explain aliasing phenomenon indicating the difference between the aliasing frequency and the Nyquist frequency.
- 6. Draw a schematic block diagram of a Fuzzy Logic Control System (FLCS) and outline the functions of each block element. 2+3

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) How does a PID type controller different from a on-off controller? What is integral saturation? $2\frac{1}{2} + 2\frac{1}{2}$
 - b) Explain a digital control loop with computer as a controller. Draw it's block diagram & explain each part briefly. Why is process part & measurement part different in the same loop?
- 8. a) Explain the structure of a distributed control system with a neat sketch. Discuss the functioning of its various parts.

CS / B.TECH (EIE-NEW) / SEM-7 / EI-702 2010-1:

- b) What is a network access protocol? Discuss the methods used for distributed control highways.
- c) What are the advantages of distributed control system?

4

- d) How is fuzzy logic different from crisp logic?
- 9. a) What device is used for signal reconstruction? How can a signal be constructed from a sequence of data points? Compare zero-order hold and first-order hold devices.

1 + 2 + 3

- b) Why is z-transform required for analysis of discrete-data systems?
- c) State and prove the initial value and final value theorems of z-transform.
- d) Find inverse z-transform of the function $F(z) = z/(z^2 4z + 2).$ 3
- 10. a) Find the closed-loop transfer function in z-domain for a sampled-data linear time-invariant system, where the plant is preceded by an ideal sampler & zero-order hold assembly.
 - b) What is a deadbeat response? Design a deadbeat controller for the all-digital system given below, for unit step and unit ramp inputs, where $G_p(z) = (z + 0.5)/(z^2 z 1)$. 1 + 2 + 2

7205

- c) Why is w-domain transfer function preferred to z-domain transfer function for Bode plots?
- d) For the following discrete-time open loop transfer function for a unity feedback control system find the minimum value of K such that the steady-state error due to ramp input is $K_v \ge 4/\sec$.

$$G_{zoh}G_p(z) = K(z+0.76)/[16(z-1)(z-0.45)].$$

- 11. Write short notes on any three of the following: $3 \times 5 = 15$
 - a) DCS architecture
 - b) Jury's stability test
 - c) Nyquist frequency and aliasing
 - d) Bode plot analysis
 - e) Deadbeat tester

=========