	Utech
Name:	
Roll No.:	To Opening State Confident
Invigilator's Signature :	

CS/B.Tech (EIE)/SEM-6/EI-601/2012 2012 PROCESS CONTROL – I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) For 100% error to the proportional controller, its output is 50%. The proportional band (PB) is
 - a) 200%

b) 150%

c) 50%

- d) 100%
- ii) The function of reset action is to
 - a) reduce rise time
 - b) reduce steady state error
 - c) reduce oscillation in the response
 - d) reduce overall gain.

6008 [Turn over

CS/B.Tech (EIE)/SEM-6/EI-601/2012

- iii) For a pneumatic controller, delayed negative feedback is equivalent to
 - a) proportional control action
 - b) on-off control action
 - c) derivative control action
 - d) integral control action.
- iv) In a temperature control system process variable varies from 40°C to 120°C . What will be the value of controller output for 60°C ?
 - a) 12 mA
 - b) 20 mA
 - c) 8 mA
 - d) 4 mA.
- v) Proportional gain is higher in
 - a) Ziegler-Nichols method
 - b) Cohen-Coon method
 - c) Both of these
 - d) None of these.

6008 2

- vi) Process dynamics refers to
 - a) Time varying behaviour of process
 - b) Static behaviour of process
 - c) Discrete behaviour of process
 - d) Impulse behaviour of process.
- vii) Flapper nozzle system uses
 - a) hydraulic relay b) pneumatic relay
 - c) electrical relay d) mechanical relay.
- viii) Ratio control is a
 - a) Feed forward control
 - b) Cascade control
 - c) Multivariable control
 - d) Both (a) & (c).
- ix) The hydraulic controller have
 - a) very low inertia/torque ratio
 - b) very high inertia/torque ratio
 - c) very low power gain
 - d) none of these.

CS/B.Tech (EIE)/SEM-6/EI-601/2012

- 20% 80% a)
- 30% 70% b)
- c) 40% - 70%
- d) 30% - 80%.
- The transfer function of capacitive tank level system is xi)
 - a) 1/(1 + sT)
- b) 1/s (1 + sT)

c) 1/S

- d) $1/(s^2T^2)$.
- The process of T.F. = 1/s, shows offset when xii) changes.
 - set point a)
 - sustained load b)
 - c) controller parameter
 - d) both for set point and controller parameter.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- Find the transfer function of a PID controller which has 2. a) proportional band of 75%, reset time of 5 seconds and rate time of 7 seconds.
 - 3
 - What do you mean by Rate time and Reset rate of a PID b) controller? 2

4

6008

- 3. a) What do you mean by tuning of controllers?
 - b) Enlist the different methods for tuning of controllers. 2
 - c) What is $\frac{1}{4}$ decay ratio?
- 4. What is the basic principle of cascade control? Where and why is this type of control preferred? 3 + 2
- 5. What is feedforward control and why is it so called ? State the reason of using feedback in this form of control. 3 + 2
- 6. What do you mean by double seated valve? Why is it advantageous over single seated valve? 3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Explain the principle of operation of ON-OFF controller.
 - b) What are the main components of digital control loop in a feedback process ? Explain an algorithm which is used in PID control tuning. 5+4
 - c) Explain an I-P converter with its proper diagram. 4

6008 5 [Turn over

CS/B.Tech (EIE)/SEM-6/EI-601/2012

8.	a)	Mention the sources of disturbances in process contr	
		studies.	
	b)	Explain the basic process control loop of a process	
		control system with the help of block diagram. 5	
	c)	What is offset ? Why does it appear ? How is it	
		eliminated?	
9. a)		Mention the function of final control element in a	
		process control loop. 2	
	b)	Draw a PI diagram of a typical flow control loop with	
		control valve as the final control element. 3	
	c)	"Actuator power required for a single seated valve is	
		greater than the double seated valve". Justify the	
		statement with proper diagram. 3	
	d)	Define valve coefficient. 2	
	e)	Draw and explain the operation of a spring actuator	
		valve with positioner. 5	
10.	a)	Explain PI pneumatic controller with diagram. Why is D	
		controller not used alone in process control? 7	
	b)	Explain ratio controller with example. 5	
	c)	How flow can be controlled using turbine flow meter? 3	
600	8	6	

11. Write short notes on any *three* of the following:

a) Combustion control in a boiler

- b) Self regulation
- c) Three element drum level control
- d) Solenoid valve
- e) Override-control
- f) DDC.