	<u>Urean</u>
<i>Name</i> :	
Roll No.:	
Invigilator's Signature:	

CS/B.TECH(EIE-NEW)/SEM-4/EE-402(EI)/2012 2012 FIELD THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - Stokes Theorem state that i)

a)
$$\oint \overline{A} \cdot d\overline{L} = \iint (\overline{\nabla} \times \overline{A}) \cdot d\overline{S}$$

b)
$$\oint \overline{A} \cdot d\overline{L} = \iint (\overline{\nabla} \cdot \overline{A}) \cdot d\overline{S}$$

c)
$$\oint \overline{A} \cdot d\overline{S} = \iint (\overline{\nabla} \cdot \overline{A}) \cdot d\overline{L}$$

d)
$$\oint \overline{A} \cdot d\overline{S} = \iint (\overline{\nabla} \times \overline{A}) \cdot d\overline{L}$$
.

The magnetic field intensity H for an infinite straight ii) current at a distance ρ in cylindrical co-ordinate is

a)
$$\overline{H} = \frac{I}{\rho} \overline{a_{\phi}}$$

b)
$$\overline{H} = \frac{I}{2\pi\rho} \bar{a}_{\rho}$$

c)
$$\overline{H} = \frac{I}{2\pi\rho} \bar{a}_{\phi}$$
 d) $\overline{H} = \frac{I}{4\pi\rho} \bar{a}_{\phi}$.

d)
$$\overline{H} = \frac{I}{4\pi o} \frac{a_{\phi}}{a_{\phi}}$$
.

iii) Magnetic flux density \overline{B} and magnetic vector potential \overline{A} are related as

b)
$$\overline{B} = -\nabla A$$

c)
$$\nabla \times B = A$$

d)
$$\overline{B} = \overline{\nabla} \times \overline{A}$$
.

iv) Divergence theorem for electrostatic field states that

a)
$$\oiint \overline{D} \cdot d\overline{S} = \iiint (\overline{\nabla} \cdot \overline{D}) d\overline{V}$$

b)
$$\oiint \overline{D} \cdot d\overline{S} = \iiint (\overline{\nabla} \times \overline{D}) d\overline{V}$$

c)
$$\oiint \overline{D} \cdot d\overline{S} = \iiint (\overline{\nabla} \cdot \overline{E}) d\overline{V}$$

d)
$$\oiint \overline{E} \cdot d\overline{S} = \iiint (\overline{\nabla} \cdot \overline{D}) d\overline{V}.$$

v) The Kirchhoff's current law equation is

a)
$$\nabla \cdot B = 0$$

b)
$$\nabla \times J = 0$$

c)
$$\nabla \times \overline{H} = \overline{J}$$

d)
$$\nabla \cdot \overrightarrow{J} = 0$$
.

vi) For a lossless transmission line the characteristic impedance is given by

a)
$$\sqrt{\frac{c}{L}}$$

b)
$$2\pi\sqrt{\frac{c}{L}}$$

c)
$$2\pi\sqrt{\frac{L}{c}}$$

d)
$$\sqrt{\frac{L}{c}}$$
.

- vii) The velocity of Electromagnetic wave propagating in free space is
 - a) $\mu_o \varepsilon_o$

b) $\sqrt{\frac{\mu_o}{\epsilon_o}}$

c) $\frac{1}{\sqrt{\mu_o \varepsilon_o}}$

- d) $\frac{1}{\mu_o \varepsilon_o}$
- viii) Displacement current can flow through
 - a) Inductor
- b) Resistor
- c) Capacitor
- d) none of these.
- ix) The ratio of conduction current density to the displacement current when electromagnetic wave travels through a partially conducting medium, is
 - a) $\frac{j\sigma}{\omega\epsilon}$

b) $\frac{\sigma}{i\omega s}$

c) $\frac{\sigma\omega}{j\epsilon}$

- d) $\frac{\varepsilon\sigma}{j\omega}$
- \mathbf{x}) In a transmission line, electrical energy is transported by
 - a) the flowing electrons
 - b) the flowing electrons and holes
 - c) the associated electric and magnetic fields
 - d) none of these.

CS/B.TECH(EIE-NEW)/SEM-4/EE-402(EI)/2012

xi) In transverse electromagnetic wave propagation the space difference between $\stackrel{-}{E}$ and $\stackrel{-}{H}$ is

a) 180°

b) 0°

c) 45°

d) 90°.

xii) Poynting vector has the unit of

a) Watt

- b) Watt/metre³
- c) watt/meter
- d) Watt/metre².

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Derive an expression for curl of a vector field (A), $\nabla \times A$ in Cartesian co-ordinate system using fundamental definition of curl.
- 3. Using vector Magnetic potential establish Biot-Savart law.
- 4. Establish that $\nabla \times \overset{\frown}{H} = \overset{\frown}{J}$. What is the physical significance of $\nabla \times \overset{\frown}{H}$?

4456

- 5. Derive the expression for capacitance of a co-axial cable having inner and outer conductor's radii a and b respectively filled by dielectric in the space between the conductors. The length of the cable is L and permittivity is \in .
- 6. Prove that the displacement current through the capacitor is equal to conduction current when a capacitor is supplied from a voltage source $v=V_m\sin\omega t$, having a capacitance C. Assume other parameters related to the system.
- 7. In a lossless transmission line, the velocity of propagation is $2\cdot 5\times 10^8\,\text{m/s}\,.$ Capacitance of the line is 30 pF/m. Find,
 - (i) inductance of the line
 - (ii) phase constant at 100 MHz
 - (iii) characteristics of the line.

5

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Sate Gauss Law. Explain the 'Gaussian surface' 2+2b) Find the divergence of Electric flux density D. 3
 c) Show that for electrostatic field $\nabla \times E = 0$ 3
 - d) Find the potential at a point P(0,0,4) m produced by a total charge of 10 nC distributed uniformly along a ring of radius 4m lying i xy plane and centred at the origin.
- 9. a) Establish the relation $\nabla \times \overline{E} = \frac{\partial \overline{B}}{\partial t}$ 5
 - b) Explain the relation $\nabla \times \overline{H} = \overline{J} + \frac{\partial D}{\partial t}$.
 - c) Explain the concept of skin depth developing the equation of current density for an electromagnetic wave travelling through good conductor.
- 10. a) Using Maxwellt's equations derive the wave equations in free space involving Electric and Magnetic fields. 5
 - b) Find an analytical solution for the electric field wave travelling in free space. What is the velocity of the wave in free space?
 - c) Establish Poynting theorem. 5

4456 6

- 11. a) Explain the importance of propagation constant (γ) and characteristic impedance (z_o) of a Transmission line. 4
 - b) State the conditions for lossless and distortionless transmission line and also derive the relations for those conditions.
 - c) What do you mean by linearly polarised plane E.M. wave?
 - d) Sketch the T.E.M. wave propagation is lossy medium. 3
- 12. Write short notes on any *three* of the following: 3×5
 - a) Poisson's and Laplace's Equations for Electro-static field.
 - b) Various kinds of electromagnetic waves in real world.
 - c) Physical significance of Divergence and ∇ , B = 0.
 - d) Boundary relations when magnetic field travels through different medium having permeabilities μ_1 and μ_2 .

4456 7 [Turn over