	Utech
Name:	
Roll No.:	The Samuel of Samuel State and State and
Invigilator's Signature :	

CS/B.TECH(NEW)/BME/ECE/EE/EIE/PWE/ICE/EEE/SEM-3/M-302/2011-12

2011

MATHEMATICS – III

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

1. Answer any ten of the following: $10 \times 2 = 20$

a) Evaluate $\oint_C \frac{z}{z^2-1}$) dz where C: |z| = 2.

- b) Find the singularities of $f(z) = \frac{1}{\sin z \cos z}$.
- c) Find the Fourier Sine Transform of

$$f(x) = \frac{1}{x} .$$

- d) Find the period of the function $f(x) = 2 | \cos^2 x |$.
- e) Prove that every function can be represented as a sum of even and odd function.

3053(N) [Turn over

- f) Show that X = 0 is a regular singular point but X = 2 is not a regular singular point of the equation $x(x-2)^3 y'' + 3(x-2)^3 y' + 4y = 0.$
- g) Find the general value of $\log (-i)$.
- h) From the discrete distribution find k:

X:	0	1	2	3	4	5	6	7
P (X):	0	k	2k	2k	3k	k^2	$2k^2$	7k ² +k

i) Determine whether the function is even or odd :

$$f(x) = \log(x + \sqrt{x^2 + 1})$$
.

j) If
$$f(x) = x$$
, $0 < x < a$,

$$= 0, x > a,$$

find the Fourier Sine Transform of f(x).

k) If $f(x) = e^{-x^2/2}$, then show that $F(s) \approx \sqrt{2\pi} e^{-s^2/2}$,

where F (s) is the Fourier transform of f (x).

- l) If $f(x) = e^{-x}$, $x \ge 0$, show that Fourier sine transform of f(x) is s F'(s), where $F(s) = tan^{-1} s$.
- m) A random variable X has the density function f(x) = x, $0 \le x \le 1$, $f(x) = \frac{1}{2}$, $1 < x \le 2$. Find the mean of X.

3053(N)

CS/B.TECH(NEW)/BME/ECE/EE/EIE/PWE/ICE/EEE/SEM3/M 302/2011-12

n) Express
$$x^3 + x^2$$
 in terms of Legendre Polynomials

$$P_{0}(x), P_{1}(x), P_{2}(x), P_{3}(x).$$

o) A random variable X has the following probability density function :

X:	0	1	2	3	4
P(X = x) = f(x):	0	5k	3k	k	k

Determine the value of k.

GROUP - B

(Long Answer Type Questions)

Answer any five questions from the following:

$$5 \times 10 = 50$$

2. i) Let f(x) = x, 0 < x < 2. Find the half range coine series.

Write Parseval's Identity coresponding to $f\left(x\right)$. Hence show that

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4} = \frac{\pi^4}{90}$$
.

ii) For a function defined by $f(z) = \sqrt{|xy|}$; show that the Cauchy-Riemann equations are satisfied at (0, 0) but the function is not differentiable at that point.

$$5 + 5$$

- 3. i) Obtain series solution of the differential equation $\frac{d^2y}{dx^2} + y = 0 \text{ near } x = 0 \text{ such that } y (0) = 1, y'(0) = 2.$
 - ii) Expand the function $f(x) = \frac{1}{(z-1)(z-2)}$ between the annular region of |z| = 1 and |z| = 2. 5+5
- 4. i) If $U(x, y) = 4xy x^3 + 3xy^2$, verify that U is harmonic function and obtain its conjugate V(x, y) so that f = U + iV is an analytic function and also find f(z), where z = x + iy, $x, y \in R$.
 - ii) Find the Fourier sine transform of the function

$$f(x) = \begin{cases} 1 & \text{for } 0 < x \le \pi \\ 0 & \text{for } x > \pi \end{cases}$$

and hence evaluate the integral

$$\int_{0}^{\infty} \frac{1 - \cos p\pi}{p} \sin px \, \mathrm{d}p.$$
 5 + 5

5. i) A random variable X has the following:

p.d.f.
$$f(x) = cx^2$$
 , $0 \le x \le 1$

= 0, otherwise

Find (i) C

(ii)
$$P (0 \le x \le \frac{1}{2})$$
.

3053(N)

ii) a) Show that:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0, m \neq n.$$

- b) Show that $J_{-n}(x) = (-1)^n \cdot J_n(x)$, $n \in \mathbb{N}$ and J_n is Bessel function of first kind. 5+5
- 6. i) Use the method of Frobenius to solve the following differential equation :

$$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 0.$$

- ii) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, (x > 0 , t > 0) subject to the conditions
 - a) u(0,t) = 0

b)
$$u(x, 0) = 1, 0 < x < 1$$

= $0, x \ge 1$

c)
$$u(x, t)$$
 is bounded.

5 + 5

7. i) Three bags contain respectively 4W, 7B, 9R; 5W, 8B, 7R and 6W, 9B, 5R balls. One ball is chosen at random from each bag. What is the probability that the balls are

(a) of same colour (b) 2W and 1R?

CS/B.TECH(NEW)/BME/ECE/EE/EIE/PWE/ICE/EEE/SEM3 302/2011-12

ii) A random variable *X* has the following probability mass function :

X	0	1	2	3	4	5	6
$P\left(X=x\right)$	k	3k	5k	7k	9k	11k	13k

- a) Find the value of k
- b) Find $P(X < 4), P(X \ge 5), P(3 < X \le 5)$
- c) Obtain the distribution function F(x)
- d) What is the smallest value of x for which $P(X \le x) > 0.5$? 5 + 5
- 8. i) The radius of a circle has distribution given by the p.d.f.

$$f(x) = 1, 1 < x < 2$$

= 0, otherwise

Find the mean and variance of the area of the circle.

- ii) If the weekly wage of 10,000 workers in a family follows normal distribution with mean and standard deviation Rs. 70 and Rs. 5 respectively, find the expected number of workers whose weekly wages are
 - a) between Rs. 66 and Rs. 72
 - b) less than Rs. 66
 - c) more than Rs. 72.

5 + 5

3053(N)

CS/B.TECH(NEW)/BME/ECE/EE/EIE/PWE/ICE/EEE/SEM 3/M 302/2011-12

$$f(z) = [x^3(1+i) - y^3(1-i)]/(x^2 + y^2),$$

 $z \neq 0, f(0) = 0$ is continuous and Cauchy's Reiman's equation are satisfied at the origin yet $f'(0)$ does not exist.

ii) Find the first four terms of the Taylor's series expansion of f(z) = (z + 1) / (z - 3) (z - 4) about z = 2 and also find the region of convergence. 5 + 5