

Invigilator's Signature :

CS/B.Tech (EEE)/SEM-7/EEE-703/2010-11 2010-11
 DIGITAL SIGNAL PROCESSING

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
i) ROC of $x(n)=a^{n}$ for $n \geq 0$ is
a) $|z|<a$
b) $\quad|z|>a$
c) difficult to define
d) none of these.
ii) A system having impulse response $h(t)$ will be BIBO stable if
a) $\quad \int_{-\infty}^{\infty}|h(t)| \mathrm{d} t<\infty$
b) $\quad \int_{-\infty}^{\infty} h(t) \mathrm{d} t<\infty$
c) $\quad \int_{-\infty}^{\infty}|h(t)| \mathrm{d} t>\infty$
d) $\quad \int_{-\infty}^{\infty}|h(t)| \mathrm{d} t=0$.
iii) A digital system in $y[n]=x\left[n^{2}\right]$ is
a) linear and causal

b) linear and non-causal
c) non-linear and causal
d) non-linear and non-causal.
iv) A digital filter is said to be IIR
a) if present output depends on previous output only
b) if system function $H(z)$ has one or more non-zero denominator coefficients
c) if all the poles lie outside the unit circle
d) if system function has only zeros.
v) A sinusoid of 1.4 kHz is sampled at intervals of 1 ms . The sampled signal will appear with frequencies as
a) $2 \cdot 4 \mathrm{kHz}$
b) 0.4 kHz
c) both (a) \& (b)
d) none of these.
vi) The convolution of $u[n]$ with $u[n-4]$ at $n=5$ is
a) 5
b) 2
c) 1
d) 0 .
vii) The signal $x(n)=(1 / 3)^{n}$ is a/an
a) energy signal
b) power signal
c) none of these
d) all of these.
viii) If $X(z)$ is the z-transform of $x(n)$, then z-transform of $x(n+k)$ is
a) $\quad z^{k} x(k)$
b) $\quad z^{k} x(z)$
c) $\quad z^{-k} x(k)$
d) $\quad z^{-k} x(z)$.
ix) A causal signal has a z-transform with ROC
a) within a circle
b) on a circle
c) outside a circle
d) as a ring in the Z-plane.
x) If $X_{1}[n]$ and $X_{2}[n]$ are finite length sequences of size L and M respectively, their linear convolution has the length
a) $L+M-2$
b) $L+M-1$
c) $L+M$
d) $\max \{L, M\}$.
xi) The region of convergence of $x(n)=2^{n} U(n)+3^{n} U(-n-1)$ is
a) $\quad|z|>3$
b) $\quad|z|<2$
c) $2<|z|<3$
d) $2>|z|>3$.
xii) "Twiddle factor" is used in
a) DFT
b) FFT
c) FIR filter designing
d) z-transform.

CS/B.Tech (EEE)/SEM-7/EEE-703/2010-11

2. What is warping effect and what is prewarping?
3. Find out the inverse z-transform of $X(z)=Y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)+\frac{1}{3} x(n-1) \quad$ using convolution method.
4. a) Prove that a linear time invariant system is stable, if its impulse response is absolutely summable.
b) Test the stability of a system whose impulse response is given by $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$. $2+3$
5. The impulse response of an LTI system is $h(n)=\{1,2,2,1\}$. Determine the response to the input signal $x(n)=\{1, \underset{\uparrow}{2}, 3,4\}$.
6. Determine the discrete time Fourier transform of $x(n)=(1 / 2)^{|n-1|}$.

7. a) Using first order section, obtain a cascade realization for

$$
H(z)=\frac{\left(1+\frac{1}{8} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)\left(1-\frac{1}{10} z^{-1}\right)}
$$

b) Find inverse z-transform for

$$
X(z)=\frac{\left(1-\frac{1}{3} z^{-1}\right)}{\left(1-z^{-1}\right)\left(1+2 z^{-1}\right)} \text { for }|z|>2
$$

8. a) An analog filter has a transfer function $H(s)=\frac{10}{s^{2}+7 s+10}$. Design a digital filter equivalent to this by impulse invariant method.
b) Determine $H(z)$ that results when the bilinear transform is applied to $H_{a}(s)=\frac{\left(s^{2}+0 \cdot 384\right)}{\left(s^{2}+0 \cdot 5185 s+0 \cdot 504\right)}$.

CS / B.Tech (EEE)/SEM-7/EEE-703/2010-11

9. a) What is characteristic of Butterworth filter?
b) Determine the transfer function Butterworth filter with unity 3 dB cut-off frequency.
10. a) Find the circular convolution of two finite duration sequences $\quad X_{1}(n)=\{1,-1,-2,3,-1\} \quad$ and $X_{2}(n)=\{1,2,3\}$ using,
i) graphical method
ii) matrix method.
b) If $x(n)=\{1,3,2\}$ and $y(n)=\{1,2\}$, find the linear convolution $x(n)^{*} y(n)$ using DFT based approach. $9+6$
11. a) Determine z-transform of $X(n)=2^{n} u(n-2)$.
b) Explain the following terms :
i) Pass-band ripple
ii) Stop-band ripple
iii) Transition band. $T=1 \mathrm{sec}$ and find $H(z)$.
d) What do you mean by the term 'window' in designing FIR filters?
e) Why is FIR filter called 'all zero filter' ? $3+3+4+3+2$

