Name :	Utech
Roll No. :	
Inviailator's Sianature ·	

CS/B.Tech (EEE)/SEM-7/EEE-703/2010-11 2010-11 **DIGITAL SIGNAL PROCESSING**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the $10 \times 1 = 10$ following:
 - i) ROC of $x(n) = a^n$ for $n \ge 0$ is
 - a) |z| < a
- b) |z| > a
- difficult to define c)
- d) none of these.
- A system having impulse response h (t) will be BIBO ii) stable if
 - a) $\int_{-\infty}^{\infty} |h(t)| dt < \infty$ b) $\int_{-\infty}^{\infty} h(t) dt < \infty$ c) $\int_{-\infty}^{\infty} |h(t)| dt > \infty$ d) $\int_{-\infty}^{\infty} |h(t)| dt = 0$.

CS/B.Tech (EEE)/SEM-7/EEE-703/2010-11

- 1 Utech
- iii) A digital system in $y[n] = x[n^2]$ is
 - a) linear and causal
 - b) linear and non-causal
 - c) non-linear and causal
 - d) non-linear and non-causal.
- iv) A digital filter is said to be IIR
 - a) if present output depends on previous output only
 - b) if system function H(z) has one or more non-zero denominator coefficients
 - c) if all the poles lie outside the unit circle
 - d) if system function has only zeros.
- v) A sinusoid of 1.4 kHz is sampled at intervals of 1 ms. The sampled signal will appear with frequencies as
 - a) 2·4 kHz
- b) 0.4 kHz
- c) both (a) & (b)
- d) none of these.
- vi) The convolution of u[n] with u[n-4] at n=5 is
 - a) 5

b) 2

c) 1

- d) 0.
- vii) The signal $x(n) = (1/3)^n$ is a/an
 - a) energy signal
- b) power signal
- c) none of these
- d) all of these.

7427

- a) $z^k x(k)$
- b) $z^k x(z)$
- c) $z^{-k} x(k)$
- d) $z^{-k} x(z)$.

ix) A causal signal has a z-transform with ROC

- within a circle a)
- b) on a circle
- outside a circle c)
- as a ring in the *Z*-plane. d)

If $X_1[n]$ and $X_2[n]$ are finite length sequences of size L and M respectively, their linear convolution has the length

- a) L + M 2
- b) L + M 1

L + M

d) $\max\{L, M\}$.

The region of convergence of $x(n) = 2^n U(n) + 3^n U(-n-1)$ xi) is

- a) |z| > 3
- b) |z| < 2
- c)
- 2 < |z| < 3 d) 2 > |z| > 3.

xii) "Twiddle factor" is used in

a) **DFT**

- b) FFT
- FIR filter designing c)
- d) z-transform.

CS/B.Tech (EEE)/SEM-7/EEE-703/2010-11

(Short Answer Type Questions)

- $3 \times 5 = 15$
- 2. What is warping effect and what is prewarping?
- 3. Find out the inverse z-transform of $X(z) = Y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$ using convolution method.
- Prove that a linear time invariant system is stable, if its 4. a) impulse response is absolutely summable.
 - b) Test the stability of a system whose impulse response is given by $h(n) = \left(\frac{1}{2}\right)^n u(n)$. 2 + 3
- 5. The impulse response of an LTI system is $h(n) = \{1, 2, 2, 1\}$. Determine the response to the input signal $x(n) = \{1, 2, 3, 4\}.$
- 6. Determine the discrete time Fourier transform of $x(n)=(1/2)^{|n-1|}$.

7427

7. a) Using first order section, obtain a cascade realization for

$$H(z) = \frac{\left(1 + \frac{1}{8}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{10}z^{-1}\right)}$$

b) Find inverse z-transform for

$$X(z) = \frac{\left(1 - \frac{1}{3}z^{-1}\right)}{\left(1 - z^{-1}\right)\left(1 + 2z^{-1}\right)} \text{ for } |z| > 2.$$

8. a) An analog filter has a transfer function $H(s) = \frac{10}{s^2 + 7s + 10}.$ Design a digital filter equivalent to

this by impulse invariant method.

b) Determine H(z)that results when the bilinear transform

is applied to
$$H_a(s) = \frac{(s^2 + 0.384)}{(s^2 + 0.5185 s + 0.504)}$$
. 8 + 7

CS/B.Tech (EEE)/SEM-7/EEE-703/2010-11

b) Determine the transfer function of 4th order Butterworth filter with unity 3 dB cut-off frequency.

6 + 9

- 10. a) Find the circular convolution of two finite duration sequences $X_1(n) = \{1, -1, -2, 3, -1\} \qquad \text{and}$ $X_2(n) = \{1, 2, 3\} \text{ using,}$
 - i) graphical method
 - ii) matrix method.
 - b) If $x(n) = \{1, 3, 2\}$ and $y(n) = \{1, 2\}$, find the linear convolution $x(n)^* y(n)$ using DFT based approach. 9 + 6
- 11. a) Determine z-transform of $X(n) = 2^n u(n-2)$.
 - b) Explain the following terms:
 - i) Pass-band ripple
 - ii) Stop-band ripple
 - iii) Transition band.

7427

- c) Apply bilinear transformation to $H(s) = \frac{z}{(s+1)(s+2)}$ with T = 1 sec and find H(z).
- d) What do you mean by the term 'window' in designing FIR filters?
- e) Why is FIR filter called 'all zero filter'? 3 + 3 + 4 + 3 + 2

7427 7 [Turn over