
 viech
 Name :
 Roll No.
 \qquad
 Invigilator's Signature :
 CS/B.Tech (ICE/EEE/EE(O)/PWE)/SEM-4/EC-402/2011 2011
 DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) In which code do the successive code characters differ in only one position?
a) Hamming code
b) Excess-3 code
c) Gray code
d) ASCII code.
ii) If t_{p} is the pulse width, Δt is the propagation delay and T is the period of pulse train, then which one of the following conditions can avoid the race around conditions ?
a) $t_{p}=\Delta t=T$
b) $2 t_{p}>\Delta t>T$
c) $\quad t_{p}<\Delta t<T$
d) $2 t_{p}<\Delta t<T$.

CS/B.Tech (ICE/EEE/EE(O)/PWE)/SEM-4/EC-402 20 Q
iii) The equation $\sqrt{213}=13$ is valid for which offer of the number systems with base?
a) Base 8
b) Base 6
c) Base 5
d) Base 4 .
iv) The minimum number of flip-flops required to design a MOD -10 counter is
a) 03
b) 10
c) 04
d) 05 .
v) The maximum number of function generated by 4 input variables is
a) 16
b) $2^{4}-1$
c) 56636
d) 65536 .
vi) A bubbled AND gate is equivalent to a
a) OR gate
b) NAND gate
c) NOR gate
d) X-OR gate.
vii) A code used for labelling the cells of a K-map is
a) 8-4-2-1 binary
b) Hexadecimal
c) Gray
d) Octal.
viii) Which one of the following is a self complementing code ?
a) Ex-3 code
b) Gray code
c) 8421 code
d) None of these.
ix) A clock frequency of 100 kHz is applied to MOD - 8 followed by a decade counter. What will be the output frequency?
a) 12.5 kHz
b) $\quad 10 \mathrm{kHz}$
c) 1.25 kHz
d) None of these.
x) A 3-bit synchronous counter uses flip-flops with propagation delay time of 20 ns each. The maximum possible time required for change of state will be
a) 60 ns
b) 40 ns
c) 20 ns
d) none of these.
xi) If the negative logic is used, the diode gate shown in the given figure will represent

a) OR gate
b) AND gate
c) NOR gate
d) NAND gate.
[Turn over

CS/B.Tech (ICE/EEE/EE(O)/PWE)/SEM-4/EC-402/209PO
xii) The minimum number of NAND gates required to implement $A+A \bar{B}+A \bar{B} C$ is equal to

a) 0
b) 1
c) 4
d) 7 .
xiii) The race-around condition does not occur in
\qquad flip-flop.
a) $\mathrm{J}-\mathrm{K}$
b) Master slave
c) T
d) None of these.
xiv) $(11011)_{2}$ in BCD 8421 code is
a) 00011011
b) 00100111
c) 11011001
d) 01101100 .
xv) For a shaft encoder, the most appropriate 2-bit code is
a) $11,10,01,00$
b) $11,10,00,01$
c) $01,10,11,00$
d) $01,00,11,10$.

2. What is fan-out ? What is the basic difference between a latch and an edge triggered Flip-Flop?
3. Design a full adder using $3: 8$ decoder with all active low outputs and additional logic gates if required.
4. Realize the following function by minimum number of 2-input NAND gates only
$F(A, B, C, D)=B(A+C D)+A C$
5. Draw the output waveform of J -K flip-flop for input sequence $\mathrm{J}=1011010$ and $\mathrm{K}=0110110$
a) The Flip-Flop is positive edge-triggered
b) The Flip-Flop is negative edge-triggered.
6. With the help of a block diagram, explain the working principle of a serial adder.

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. a) Implement the following function using $3 \times 4 \times 2$ PLA :

$$
F_{1}(A, B, C)=\sum(3,5,6,7), F_{2}(A, B, C)=\sum(0,2,4,7)
$$

b) Describe the R-2R ladder type D/A converter.
c) What do you mean by resolution? $6+8+1$
$\mathrm{CS} / \mathrm{B} . \mathrm{Tech}(\mathrm{ICE} / \mathrm{EEE} / \mathrm{EE}(\mathrm{O}) / \mathrm{PWE}) / \mathrm{SEM}-4 / \mathrm{EC}-402 / 2091$ OR Uhesn
8. a) What is CLA adder ? Define the terms 'carry generate' and 'carry propagate'. Design the CLA adder and explain its operation.
b) What are the differences between serial adder and parallel adder ?
c) Design a logic diagram using logic gates and four full adder module for addition/subtraction, a control variable P such that this operate as full adder when $P=0$ and full subtractor when $P=1$.

$$
(1+2+5)+2+5
$$

9. a) Explain the operation of dual slope integration type A/D converter. Derive the expression of the output voltage.
b) Draw the circuit diagram of 2 input TTL NAND gate and explain how it works. Write down the truth table.
c) What do you mean by resolution ?
10. a) What are the facilities available in universal shift register ? How can a 4 -bit universal shift register be realized using multiplexers and Flip-Flops.
b) Write down the count sequence of a 3-hit binary Down Counter. Design a Ripple counter using negative edge triggered T Flip-Flops for the sequence.
c) What is race-around condition ? How it can be eliminated?
$\mathrm{CS} / \mathrm{B} . \mathrm{Tech}(\mathrm{ICE} / \mathrm{EEE} / \mathrm{EE}(\mathrm{O}) / \mathrm{PWE}) / \mathrm{SEM}-4 / \mathrm{ECP} 402 / 2011$
Simplify the Boolean function :
$F=\sum_{m}(0,2,3,6,7)+\sum_{d}(8,10,11,15)$ Using Kich method.
b) Design a full subtractor circuit with the help of fulladder circuit and one NOT gate. Write down the expression $\&$ truth table in favour of your design.
c) Which code is known as self complementing code ? Explain you answer.
$7+5+3$
