	Utech
Name:	<u>A</u>
Roll No.:	A Alaman (VE servinday 2nd Excitors)
Invigilator's Signature:	

CS/B.TECH (EE)/SEM-7/EE-704C/2012-13

2012

POWER GENERATION ECONOMICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Load factor for a peak load plant is
 - a) 0

b) 1

c) low

- d) high.
- ii) Hydel power plant can be used as
 - a) peak load plant
- b) base load plant
- c) both (a) and (b)
- d) none of these.
- iii) Load flow solution is done to calculate
 - a) generated power by slack bus
 - b) system parameter
 - c) bus voltage & active power loss
 - d) bus voltage & phase angle of each and every bus.
- iv) Demand factor is
 - a) always greater than 1
 - b) always less than 1
 - c) of any value
 - d) depends upon the system.

7343 Turn over

CS/B.TECH (EE)/SEM-7/EE-704C/2012-13

v)	Efficiency of a thermal power plant is					
	a)	40%	b)	60%		
	c)	80%	d)	30%.		
vi)	Run	ning cost is high for		power plant.		
	a)	thermal	b)	hydel		
	c)	nuclear	d)	non-conventional.		
vii)	Initi	tial cost is higher for power plant.				
	a)	thermal	b)	hydel		
	c)	nuclear	d)	diesel.		
viii)		· · · · · ·	is go	ood for power generation		
	ecor	nomics.				
	a)	less than 1	b)	greater than 1		
	c)	zero	d)	equals to 1		
ix)	In lo	oad duration curve loads are arranged in				
	a)	ascending order				
	b)	descending order				
	c)	any order				
	d)	a way that depends up	on th	ne load curve.		
x)	Stat	e estimation is done to	know	7		
	a)		_	magnitude and phase		
		angle of each and every bus				
	b)	economic dispatch solution				
	c)	system power loss				
	d)	load flow solution.				
			_			

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following

- $3 \times 5 = 15$
- 2. Discuss the economic justification of the thermal power plants.
- 3. Discuss the various types of Unit Commitment method.

- 4. Define the terms 'load factor' and 'diversity factor' and explain the economic implication of these factors on the cost of energy generation.
- 5. Develop a simple Computational method in economic load scheduling.
- 6. Write down about the different load forecasting techniques.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Explain 'Flow only algorithm' with required equations.
 - b) Estimate two values random variables *x* by weighted LSE method for

$$W = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.1 \end{bmatrix} \quad H = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad y = \begin{bmatrix} 0.5 \\ 0.45 \\ 0.51 \end{bmatrix}$$
 7 + 8

- 8. a) Write a short note on 'ABT'.
 - b) A factory to be set up is to have a fixed load of 760 kW at 0.8 pf. The electricity board offers to supply energy at the following alternate rates:
 - i) LV supply at Rs 32/kVA max demand/annum+ 10 paise/kWh
 - ii) HV supply at Rs 30/kVA max demand/annum + 10 paise/kWh

The HV switchgear costs Rs 60/kVA and switchgear losses at full load amount to 5%. Interest, depreciation charges for the switchgear are 12% of the capital cost. If the factory is to work for 48 hours/week, determine the more economical tariff. 7+8

- 9. a) How can high diversity be achieved? Explain whether it is desirable or not.
 - b) There are three consumers of electricity having different load requirements at different times. Consumer *A* has a maximum demand of 5 kW at 6 p.m. and a demand of

CS/B.TECH (EE)/SEM-7/EE-704C/2012-13

- i) the diversity factor
- ii) the load factor and average load of each consumer

his maximum demand is 3 kW at 7 p.m. Determine

iii) the average load and load factor of the combined load.

$$(4+2)+9$$

- 10. a) How the transmission loss formula is expressed? Draw the flow chart for the solution of coordination equation considering transmission loss.
 - b) A two-bus system is shown in given figure. If a load of 125 MW is transmitted from plant 1 to the load, a loss of 15.625 MW is incurred. Determine the generation schedule and load demand if the cost of received power is Rs 24/MWhr.

The incremental production cost of the plants are

$$\frac{dF_1}{dP_1} = 0.025P_1 + 15, \ \frac{dF_2}{dP_2} = 0.05P_2 + 20.$$
 (1 + 7) + 7

- 11. Write short notes on any *two* of the following: $2 \times 7\frac{1}{2}$
 - a) Unit commitment
 - b) Cost of power generation for thermal, hydro, nuclear power plants
 - c) Spinning reserve.

=========