

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 CONTROL SYSTEMS SEMESTER - 6

111116	::3 F	iours				[Full Marks : 70
			GI	ROUP - A		
			(Multiple Cho	oice Type	Questions)	
1.	Choose the correct alternatives for any ten of the following:					10 × 1 = 10
	i)	A set	of state variables for a sy	stem is		
		a)	not unique in general	b)	always unique	
		c)	never unique	d)	may be unique.	
	ii) State variable approach converts an nth order system into					
		a)	n second order integro-di	ferential e	quation	
	1	b)	two differential equations			
		c)	n first order differential e	quations		
		d)	a lower order system.			
	iii)	iii) If both eigenvalues of a second order system are real, equal & negative of each				
		other;	the origin in the phase p	ortraits is	termed as	
er e	• . * .	a)	the nodal point	b)	the focus point	
	-	c)	the saddle point	d)	none of these.	
	iv)	The 2	nd order system X = AX l	nas A =	$\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$. The val	ues of its damping

b)

0.5 & 1

1.41 & 1.

VI-267333 (3-A)

& natrural frequencies are

1 & 1

0.707 & 2

- v) Lyapunov's stabilty criterion can be used for determination of
 - a) linear system

b) non-linear system

c) both (a) & (c)

d) none of these.

vi) In the figure below:

- a) A has unstable limit cycle & B has stable limit cycle
- b) A has stable limit cycle & B has unstable limit cycle
- c) both A & B have unstable limit cycle
- d) none of these.

- vii) Lyapunov function is
 - a) energy function
- b) work function
- c) state function
- d) output function.
- viii) Describing function is based on
 - a) Harmonic linearization
- b) System linearization
- c) Degree of non-linearity
- d) None of these.
- (ix) If $A = \begin{bmatrix} -0.5 & 0 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, then
 - a) system is controllable
- b) system is uncontrollable
- c) system is undefined
- d) none of these.

5

x) A linear system is described by the state equations

$$\begin{bmatrix} \dot{X}_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} R$$

$$C = X_2$$

where R & C are the input & output respectively. The transfer function is

a)
$$\frac{1}{S+1}$$

b)
$$\frac{1}{(S+1)^2}$$

c)
$$\frac{1}{S-1}$$

d)
$$\frac{1}{(S-1)^2}$$

xi) In series RLC circuit, the number of state variables is

a) 3

b) 2

c) 1

d) none of these.

xii) The transfer function of a zero order hold circuit is

a)
$$\frac{1-e^{-TS}}{S}$$

b)
$$\frac{1+e^{-TS}}{S}$$

c)
$$\frac{1+e^{-TS}}{S}$$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Obtain the state variable model of the system whose transfer function is given by

$$\frac{Y(S)}{U(S)} = \frac{S^2 + 3S + 3}{S^3 + 2S^2 + 3S + 1}$$

3. Determine the unit step response in closed form for the system given by

$$X(k+1) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \text{ for all } k \ge 0 \text{ with } X(0) = 0.$$

4. Given $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -4 & 2 \\ 0 & 0 & -10 \end{bmatrix}$; $B = \begin{bmatrix} 1 & 0 - 1 \end{bmatrix}^T$; & $C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$. Determine the

similarity transformation matrix P to transform the system.

$$\dot{X} = AX + BU & \text{output}$$

Y = CX to the controllable canonical form.

- 5. Find the describing function of on-off non-linearity.
- 6. Consider the network shown in the figure. Obtain the state variable formulation.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Define phase plane, phase trajectory & phase portrait.
 - b) Define singular points. Give the detail classification of singular points.
 - c) For the linear system shown, sketch the phase trajectories using isocline method.

d) Show that the following quadratic form is positive definite.

$$v(x) = 8x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 - 4x_1x_3 - 2x_2x_3$$

$$3 + 4 + 5 + 3$$

8. a) Solve the following difference equation using Z-transform method.

$$x(k+2)+3x(k+1)+2x(k)=0, x(0)=0, x(1)=1.$$

- b) Obtain the discrete time state equation for the continuous time system given in problem, 8 (a) assuming sampling time, T = 0.1 sec.
- c) In continuous time, a system is given by the transfer function,

$$G(s) = \frac{k}{s+a}$$
. Find the Z-transfer function, $G(z)$.

6 + 6 + 3

9. a) Determine the amplitude and frequency of the limit cycle of the non-linearity shown in the figure

b) Determine the stability of the system shown in the figure

10 + 5

- 10 a) State Lyapunov's direct method of investigating stability of non-linear system.
 - b) A linear system is described by the state equation $\dot{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x$.

 Investigate the stability of this system using Lyapunov's theorem.
 - c) Consider the system defined by $\dot{X} = AX + BU$, where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

By using feedback control u = -kx, it is desired to have closed loop poles at $s = -1 \pm j$, s = -10. Determine the state feedback gain matrix k. 4 + 5 + 6

11. Write short notes on any three of the following:

 $3 \times 5 = 15$

- a) Regulator problems.
- b) Harmonic linearization.
- c) Computer control.
- d) Non-conservative systems.
- e) Feedback controller.

END