	Uiteah
Name:	
Roll No.:	To Dear by Exercising and Exercise
Invigilator's Signature :	

DIGITAL ELECTRONICS & INTEGRATED CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

 $1. \quad \hbox{Choose the correct alternatives for any $\it ten$ of the following:}$

$$10 \times 1 = 10$$

- i) Identify the carry expression of full adder circuit
 - a) $X^{T}Y + ZX^{T}$
 - b) XY + YZ + ZX
 - c) XY' + YZ' + ZX
 - d) X'Y' + XZ' + YZ.
- ii) Which one is used in EPROM eraser?
 - a) Laser light
- b) UV ray
- c) LED light
- d) Sunrays.

4203 (O) [Turn over

- iii) Gray code of 1011 (binary) =
 - a) 0101

b) 1101

c) 1110

- d) none of these.
- iv) What is the next octal counting sequence 724, 725, 726, 727?
 - a) 728

b) 729

c) 730

- d) 731.
- v) The equation $\sqrt{(213)} = 13$ is valid for which one of the number system with base?
 - a) Base 8

b) Base 6

c) Base 5

- d) Base 4.
- vi) A 10 MHz signal is applied to a MOD-5 counter followed by a MOD-8 counter then the o/p frequency will be
 - a) 10 kHz
- b) 2.5 kHz

c) 5 kHz

d) 250 kHz.

vii)	Calculator keyboard is an example of			
	a)	decoder	b)	encoder
	c)	multiplexer	d)	demultiplexer.
viii)	A si	ngle bit memory device	is	
	a)	ROM	b)	RAM
	c)	F-F	d)	PROM.
ix)	The	octal equivalent of the	bina	ry number 11010111 is
	a)	656	b)	327
	c)	653	d)	D7.
x)	The minimum number of NAND gates required implement the Boolean function $A + AB^{T} + AB^{T}C$ equal to			
	a)	zero	b)	1
	c)	4	d)	7.
xi)	The	fastest logic gate famil	y is	
	a)	CMOS	b)	ECL
	c)	TTL	d)	RTL.
4203 (O)		3		[Turn over

xii) The memory, which is ultraviolet electrically programmable is

a) RAM

b) EEROM

- c) EPROM
- d) PROM.
- xiii) A ring counter consists of 5 flip-flops will have
 - a) 5 states
- b) 10 states
- c) 32 states
- d) none of these.
- xiv) The flip-flop, which is free from race around problem is
 - a) R-S flip-flop
 - b) Master-slave JK flip-flop
 - c) J-K flip-flop
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Explain the race around condition. Draw the Master/Slave JK flip-flop using all NAND gates. 2+3

- 3. Implement a full-adder circuit using 3 to 8 decoder with all active high outputs and other necessary logic gates.
- 4. Draw and explain the circuit of 8 \times 1 MUX using two 4 \times 1 MUX and one 2 \times 1 MUX.
- 5. Minimize the following expression in SOP form using Quine McClusky method :

$$F(A, B, C, D) = \sum m(1, 2, 3, 8, 9, 10, 11, 14) + \sum d(7, 15).$$

6. Perform the arithmetic operation :

$$(-22)_{\text{decimal}} + (13)_{\text{decimal}} + (-15)_{\text{decimal}}$$

using 2's complement binary form.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. Write short notes on any three of the following: 3×5
 - a) EPROM
 - b) A/D converter
 - c) Parity generator
 - d) Tri-state gates in TTL family
 - e) Data Lock-out in a counter.

8. a) Implement the following Boolean expressions using Decoder.

$$F_1(A, B, C, D) = \sum (1, 2, 5, 7, 8, 10, 12, 13).$$
 5

- b) Implement a full adder circuit using minimum numberof NOR gates only.5
- c) An 8 : 1 MUX has inputs A, B, C connected to select line S_2 , S_1 , S_0 respectively. The data inputs I_0 to I_7 are connected as $I_1 = I_2 = I_7 = 0$,

 $I_3 = I_5 = 1$, $I_0 = I_4 = D$, $I_6 = D'$. Determine the Boolean expression of the MUX output.

- 9. a) Design MOD-10 synchronous UP-counter using the JK flip-flops and other required logic gates.10
 - b) Calculate the propagation delay for a 4-bit synchronous UP-counter when JK flip-flops are connected in series connection and parallel connection. Given propagation delay t_p (FF) equals to 30 nsec and the propagation delay of the gates used in the circuit are 20 nsec (assumed to be equal for all gates).

4203 (O)

10. a) Construct a 4-bit register with parallel load.

b) Describe the basic principles of Successive

Approximation Method for A/D converter. 5