

CS/ B.Tech(EE-OLD)/ SEM-4/ EC(EE)-402/ 2012 2012

DIGITAL ELECTRONICS \& INTEGRATED CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Identify the carry expression of full adder circuit
a) $X^{\prime} Y+Z X^{\prime}$
b) $X Y+Y Z+Z X$
c) $X Y^{\prime}+Y Z^{\prime}+Z X$
d) $\quad X^{\prime} Y^{\prime}+X Z^{\prime}+Y Z$.
ii) Which one is used in EPROM eraser ?
a) Laser light
b) UV ray
c) LED light
d) Sunrays.

CS/B.Tech(EE-OLD)/SEM-4/EC(EE)-402/2012
iii) Gray code of 1011 (binary) =

a) 0101
b) 1101
c) 1110
d) none of these.
iv) What is the next octal counting sequence 724,725 , 726, 727 ?
a) 728
b) 729
c) 730
d) 731 .
v) The equation $\sqrt{ }(213)=13$ is valid for which one of the number system with base?
a) Base 8
b) Base 6
c) Base 5
d) Base 4.
vi) A 10 MHz signal is applied to a MOD-5 counter followed by a MOD-8 counter then the o/p frequency will be
a) $\quad 10 \mathrm{kHz}$
b) 2.5 kHz
c) 5 kHz
d) 250 kHz .
CS/B.Tech(EE-OLD)/SEM-4/ECEEP402/2012
vii) Calculator keyboard is an example of

a) decoder	b) encoder
c) multiplexer	d) demultiplexer.

viii) A single bit memory device is
a) ROM
b) RAM
c) $\mathrm{F}-\mathrm{F}$
d) PROM .
ix) The octal equivalent of the binary number 11010111 is
a) 656
b) 327
c) 653
d) D 7 .
x) The minimum number of NAND gates required to implement the Boolean function $A+A B^{\prime}+A B^{\prime} C$ is equal to
a) zero
b) 1
c) 4
d) 7 .
xi) The fastest logic gate family is
a) CMOS
b) ECL
c) TTL
d) RTL .

CS/B.Tech(EE-OLD)/SEM-4/EC(EE)-402/2012
xii) The memory, which is ultraviolet electrically programmable is

a) RAM
b) EEROM
c) EPROM
d) PROM.
xiii) A ring counter consists of 5 flip-flops will have
a) 5 states
b) 10 states
c) 32 states
d) none of these.
xiv) The flip-flop, which is free from race around problem is
a) R-S flip-flop
b) Master-slave JK flip-flop
c) J-K flip-flop
d) none of these.

GROUP - B
 (Short Answer Type Questions)
 Answer any three of the following. $3 \times 5=15$

2. Explain the race around condition. Draw the Master/Slave JK flip-flop using all NAND gates.
3. Implement a full-adder circuit using 3 to 8 decoden with all active high outputs and other necessary logic gates.
4. Draw and explain the circuit of 8×1 MUX using two 4×1 MUX and one 2×1 MUX.
5. Minimize the following expression in SOP form using Quine McClusky method :
$F(A, B, C, D)=\sum m(1,2,3,8,9,10,11,14)+\sum d(7,15)$.
6. Perform the arithmetic operation :

$$
(-22)_{\text {decimal }}+(13)_{\text {decimal }}+(-15)_{\text {decimal }}
$$

using 2's complement binary form.
GROUP - C
(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. Write short notes on any three of the following :
a) EPROM
b) A / D converter
c) Parity generator
d) Tri-state gates in TTL family
e) Data Lock-out in a counter.

CS/B.Tech(EE-OLD)/SEM-4/EC(EE)-402/2012
8. a) Implement the following Boolean expressions using Decoder.

$$
\begin{equation*}
F_{1}(A, B, C, D)=\sum(1,2,5,7,8,10,12,13) \tag{5}
\end{equation*}
$$

b) Implement a full adder circuit using minimum number of NOR gates only.
c) An 8:1 MUX has inputs A, B, C connected to select line S_{2}, S_{1}, S_{0} respectively. The data inputs I_{0} to I_{7} are connected as $I_{1}=I_{2}=I_{7}=0$,
$I_{3}=I_{5}=1, \quad I_{0}=I_{4}=D, \quad I_{6}=D^{\prime}$. Determine the Boolean expression of the MUX output.
9. a) Design MOD-10 synchronous UP-counter using the JK flip-flops and other required logic gates. 10
b) Calculate the propagation delay for a 4-bit synchronous UP-counter when JK flip-flops are connected in series connection and parallel connection. Given propagation delay $t_{p}(F F)$ equals to 30 nsec and the propagation delay of the gates used in the circuit are 20 nsec (assumed to be equal for all gates).

