	Utech
Name:	<u>A</u>
Roll No.:	In Spanie (VE) marketing and Excellent
Invigilator's Signature :	

CS / B.TECH (EE-NEW) / SEM-4 / EC (EE)-401/ 2011 2011

ANALOG ELECTRONIC CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) Saturation region operation of a BJT implies
 - a) base emitter junction forward biased, base collector junction reverse biased
 - b) base emitter junction forward biased, base collector junction forward biased
 - c) base emitter junction reverse biased, base collector junction reverse biased
 - d) none of these.

4005 [Turn over

CS /

/ B.T	ECH	(EE-NEW) / SEM-4 / E	C(EE)-401/ 2011 ©©	
ii)	A di	ifferential amplifier has	the	differential gain of 100,	
	its CMRR = 240. The common mode gain is				
	a)	0.24	b)	0.417	
	c)	24000	d)	1.	
iii)	In	amplifier, if conductio	n is	during the cycle from	
	0 degree to 9 degree and again from 180 degree to				
	270 degree, the amplifier be termed as				
	a)	Class A	b)	Class B	
	c)	Class C	d)	Class AB.	
iv)	Thermal runaway in a transistor biased in the region				
	due to				
	a)	heating of transistor			
	b)	change in reverse collector saturation due to rise in			
		temperature			

it gives better stability a)

middle of the active region because

none of these.

c)

v)

- b) the circuit needs a small DC voltage
- the biasing circuit needs less number of resistors c)

The Q point in a voltage amplifier is selected in the

- it gives a distortion-less output.
- An ideal regulated power supply should have regulation vi) which is
 - maximum b) 50% a) c)
 - zero

CS / B.TECH (EE-NEW) / SEM-4 / EC(EE)-401/ 2011 vii) A class B push-pull amplifier has an AC output of 10 watt. The DC power drawn from the power supply under ideal condition is

- a) 10 watt
- b) 12.75 watt
- c) 15 watt
- d) 20 watt.
- viii) To improve the efficiency of amplifier we have to
 - a) reduce the power dissipating rating
 - b) reduce supply voltage
 - c) reduce unwanted power loss
 - d) none of these.
- ix) CE amplifier is used as a/an
 - a) RF amplifier
 - b) Microwave amplifier
 - c) Audio frequency amplifier
 - d) Buffer amplifier.
- x) To avoid false triggering of the NE 555 timer the reset pin (Pin 4) is generally connected to
 - a) Pin 8

b) Pin 1

c) Pin 3

- d) No Connection (NC).
- xi) The maximum efficiency of transformer coupled class A power amplifier is
 - a) 25%

b) 50%

c) 79%

- d) 100%.
- xii) For a wide range of oscillations in the audio range, the preferred oscillator is
 - a) Hartley
- b) Phase shift
- c) Wien bridge
- d) Colpitt.

CS / B.TECH (EE-NEW) / SEM-4 / EC(EE)-401/ 2011

- xiii) In a logarithmic amplifier, the logarithmic effect of the input is obtained from
 - a) non-linear device, like diode or transistor
 - b) negative feedback
 - c) the Op-Amp itself
 - d) the inverting input terminal.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- What are the differences between Series and Shunt regulators? Draw a circuit diagram of a shunt regulator and explain its operation.
- 3. Draw the circuit diagram of a stable multivibrator using 555.Find the expression for the time period. 3 + 2
- 4. Explain the operation of half-wave precision rectifier and draw its input and output waveforms.
- 5. Explain the operation of an Op-Amp as an adder circuit.
- 6. Explain the operation of a transformer coupled class *A* amplifier.

4005 4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) Find out the input power, output power and efficiency of the amplifier circuit in the figure given below for an input voltage that results in a base current of 10mA peak. Transistor parameters are $\beta = 25$, $V_{BE} = 0.75$.

- b) Find out the maximum efficiency of a class B power amplifier.
- c) Draw and explain the operation of a complementarysymmetry push-pull circuit. 6 + 5 + 4
- 8. a) What is the physical origin of the two capacitors in the high frequency hybrid- π model of a *CE* transistor?
 - b) For the high frequency hybrid- π model of a CE transistor, prove that
 - i) $h_{fe} = g_m \cdot r_{b'e}$
 - ii) $h_{ie} = r_{bb'} + r_{b'e}$

Assuming $r_{bb'} << r_{b'e}$, how does $\,h_{ie}\,{\rm vary}$ with $|\,{\it I}_{\it C}\,|\,$?

c) Find h_{re} in terms of common base (CB) h-parameters.

3 + 7 + 5

CS / B.TECH (EE-NEW) / SEM-4 / EC(EE)-401/ 2011

- b) Explain a series transistor voltage regulator with a simple circuit. How can its performance be improved by using an Op-Amp?
- c) In the following circuit, the Zener diode has the specification of 12V, $\frac{1}{4}$ W. $V_{in}=20\mathrm{V}, R_L=240~\Omega$. Calculate the value of R_b

$$3 + (4 + 3) + 5$$

- 10. a) What is VCO ? What are the basic differences between VCO and fixed frequency oscillator ?
 - b) What are the main components of PLL? Draw the block diagram of a PLL. (2+3)+(5+5)

4005

CS / B.TECH (EE-NEW) / SEM-4 / EC(EE) 401/2 2011

- 11. Write short notes on any three of the following:
 - a) Ebers-Moll model of a transistor
 - b) Enhancement MOSFET
 - c) High frequency model of transistor
 - d) Logarithmic amplifier
 - e) Tuned amplifier
 - f) Voltage controlled oscillator
 - g) Window detector
 - h) Frequency to voltage converter using diode pump integrator.

==========