http://www.makaut.com

*CB/B.Tech/EE/EEE/ICE/Odd/Sem-3rd/EC(EE)-302/2014-15

EC(EE)-302

DIGITAL ELECTRONIC CIRCUITS

Time Allotted: 3 Hours

Full Marks: 70

The questions are of equal value. The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP A (Multiple Choice Type Questions)

1. Answer any ten questions.

 $10 \times 1 = 10$

http://www.makaut.com

- (i) The fastest logic family is
 - (A) TTL

(B) CMOS

(C) RTL

(D) ECL

- (ii) A flip-flop has
 - (A) one stable state

(B) two stable states

(C) three stable states

- (D) none of these
- (iii) A decoder with enable input can be used as
 - (A) encoder

(B) parity generator

(C) multiplexer

- (D) de-multiplexer
- (iv) The minimum no. of NAND gates required to design one full adder circuit is
 - (A)5

(B) 9

(C) 6

(D) I0

3105

[Turn over]

CS/B.Tech/EE/EEE/ICE/Odd/Sem-3rd/EC(EE)-302/2014-15

- (v) Which family has better noise margin?
 - (A) TTL

(B) ECL

(C) DTL

- (D) MOS
- (vi) Master slave configuration is used in flip flop to
 - (A) increase its clocking rate
- (B) reduce power dissipation
- (C) eliminate race around condition
- (D) improve its reliability
- (vii) The power consumption of a dynamic RAM is
 - (A) equal to static RAM

- (B) more than static RAM
- (C) less than static RAM

- (D) almost zero
- (viii) How many full adders are required to construct m bit parallel adder?
 - (A) m/2

(B) m

(C) m - 1

- (D) m + 1
- (ix) An example of self-complementing code is
 - (A) BCD

(B) GRAY

(C) ASCII

- (D) Excess-3
- (x) The simplified form of the Boolean expression (X + Y' + Z)(X + Y' + Z')(X + Y + Z) is
 - (A) X'Y + Z

(B) X + Y'Z

(C) X'Y + Z'

- (D) XY + Z'
- (xi) The code used for labeling cell of the K-map is
 - (A) natural BCD

(B) hexadecimal

(C) gray

- (D) octal
- (xii) A modulus 10 Johnson counter requires
 - (A) ten flip-flops

(B) four flip-flops

(C) five flip-flops

(D) twelve flip-flops

3105

3105

CS/B.Tech/EE/EEE/ICE/Odd/Sem-3rd/EC(EE)-302/2014-15

Answer any three questions.

using basic gates.

GROUP B (Short Answer Type Questions)

2.		Implement the following expression using NOR gate only	5
ž.		$F(A, B, C) = \sum m(0, 1, 4, 6)$	
3.	(a)	Can a decoder be used as a demultiplexer? If it is possible what hardware feature should be present with the decoder?	2+3
	(b)	Cascade two 2-to-4 decoders to form 3-to-8 decoder.	
ŧ.		Implement a full adder circuit using 3 to 8 decoder with all active high outputs and other necessary logic gates.	5
5 .		Explain parallel in serial out shift register with block diagram.	5
6.	(a)	Differentiate combinational logic circuit and sequential logic circuit.	2+3
	(b)	Minimize the following function using K-map $F(A,B,C,D) = \Sigma_m(0,2,3,6,7) + \Sigma_n(8,10,11,15)$ and implement the circuit	

GROUP C (Long Answer Type Questions)

		Answer any three questions.	3×15 ≈ 45
7	. (a)	Draw and explain the BCD adder circuit using commercially available IC-7483 and other necessary logic gates.	•
	(b)	Design a combinational circuit using ROM that accepts 3-bit number and generate the output binary number equal to square of input number.	:
	(c)	Design Binary to gray code converter using logic gates.	3
8	. (a)	Write the truth-table, circuit diagram, waveform and state diagram of J-K flip-flop.	8+7
	(b)	Convert D flip-flop to J-K flip-flop.	

[Turn over]

3×5 = 15

http://www.makaut.com

CS/B.Tech/EE/EEE/ICE/Odd/Sem-3rd/EC(EE)-302/2014-15

- 9. (a) What are the differences between LATCH and flip-flop?
 - (b) Design MOD-3 synchronous counter using J-K flip-flop.
 - (c) Design MOD-6 ripple counter using negative edge trigger J-K flip-flop.
- 10.(a) Explain the operation of R-2R Ladder type DAC with neat circuit diagram.
 - (b) Explain the working of a successive approximation register (SAR) type ADC.
- 11. Write short notes on any three of the following:
 - (a) 2-bit comparator
 - (b) Odd parity generator and checker
 - (c) Parallel in serial out (PISO) shift register
 - (d) Tri-state gates in TTL family
 - (e) Johnson counter

3105

3