
Na	me ·			
			Signature :	
1110	<i>igia</i>	.OI 3 C	CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-1	^
			2009	<u>ب</u>
ſ		C	IRCUIT THEORY & NETWORKS	
Tin	ne Ali	lotted	l: 3 Hours Full Marks: 70	0
		T	he figures in the margin indicate full marks.	
C	andia	lates	are required to give their answers in their own words as far as practicable.	
			GROUP - A	
			(Multiple Choice Type Questions)	
1.	Che	oose	the correct alternatives for any ten of the following: $10 \times 1 = 10$	
	i)		he voltage across a given capacitor is increased, th ount of stored charge	e
		a)	increases b) decreases	
		c)	remains constant d) is exactly doubled.	
ii) A practical voltage source co			ractical voltage source consists of	
		a)	an ideal voltage source in series with an interna	ιl
		b)	an ideal voltage source in parallel with an internates	ıl
		c)	both (a) & (b) are correct	
•	-	d)	none of these.	

33306

www.makaut.com

[Turn over

iii) Determine the current I in the circuit shown is figure :

a) 2.5 A

b) 1A

c) 3.5 A

- d) 4.5 A.
- iv) A 1 kHz sinusoidal volatage is applied to an RL circuit What is the frequency of the resulting current?
 - a) 1 kHz

- b) 0.1 kHz
- c) 100 kHz
- d) 2 kHz.
- v) A series circuit consisting of two elements has the following current & applied voltage:

$$i = 4 \cos (2000 t + 11.32^{\circ}) A$$

$$v = 200 \sin (2000 t + 50^{\circ}) V$$

The circuit elements are

- a) resistance & capacitance
- b) capacitance & inductance
- c) inductance & resistance
- d) both resistances.
- vi) In a certain RL circuit, $V_R = 2 \text{ V & } V_L = 3 \text{V}$.

What is the magnitude of the total voltage?

- a) 2 V
- b) 3 V

c) 5 V

- d) 3.61 V.
- vii) Maximum power transfer occurs at
 - a) 100% efficiency
- b) 50% efficiency
- c) 25% efficiency
- d) 75% efficiency.

33306

viii)	A source has	an emf of 10V	and impedance of				
	$500 + j100\Omega.$	The amount of	maximum power				
	transferred to the load will be						

- a) 0.5 mW
- b) 0.05 mW

c) 0.05 W

d) 0.5 W.

ix) Transient current in an RLC circuit is oscillatory when

- a) $R = 2\sqrt{L/C}$
- b) R = 0
- c) $R > 2\sqrt{L/C}$
- d) $R < 2\sqrt{L/C}$.

x) When a series RL circuit is connected to a voltage V at t = 0, the current passing through the inductor L at t = 0 is

a) $\frac{V}{R}$

b) infinite

c) zero

d) $\frac{V}{L}$

xi) The current in the neutral wire of a balanced threephase, four-wire star-connected load is given by

- a) zero
- b) $\sqrt{3}$ times the current in each phase
- c) 3 times the current in each phase
- d) the current in each phase.

xii) A two port network is simply a network inside a black box & the network has only

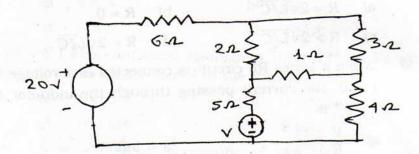
- a) two terminals
- b) two pairs of accessible terminals
- c) two pairs of ports
- d) 4 pairs of ports.

33306

3

[Turn over

 $3 \times 5 = 15$


CS/B.Tech(EIE)/SEM-3/EE-301(EI)/2009-10

GROUP - B

(Short Answer Type Questions)

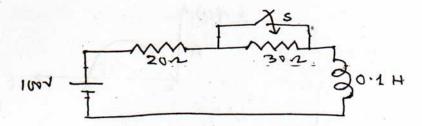
Answer any three of the following.

 Determine the voltage V which causes the current I₁ to be zero in the circuit shown Use mesh analysis.

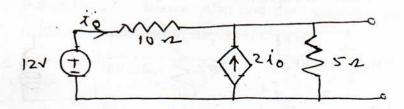
3. A series cricuit consisting of two pure elements has the following current & voltage:

$$v = 100 \sin (2000 t + 50^{\circ}) V$$

$$i = 20 \cos (2000 t + 20^{\circ}) A$$


Find the element in the circuit.

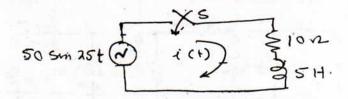
- 4. A three phase balanced delta-connected load with line voltage of 200 V, has line currents as $I_1 = 10 \angle 90^\circ$, $I_2 = 10 \angle -150^\circ$ & $I_3 = 10 \angle -30^\circ$.
 - a) What is the phase sequence?
 - b) What are the impedances?


33306

4

5. For the circuit shown in figure, find the complete expression for the current when the switch is closed at t = 0:

 Find the Norton's equivalent circuit across terminal AB for the circuit shown.

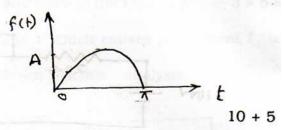

GROUP - C

(Long Answer Type Questions)

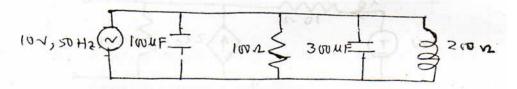
Answer any three of the following.

 $3 \times 15 = 45$

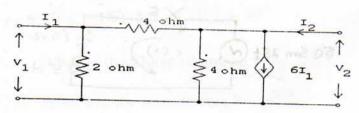
7. a) The circuit shown in figure consists of series R - L elements. The sine wave is applied to the circuit when the switch S is closed at t = 0. Determine the current i(t)



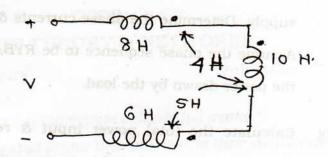
33306


5

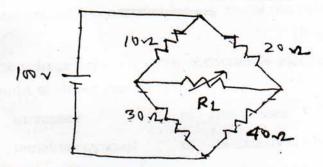
Turn over


b) Find the Laplace transform of the waveform shown:

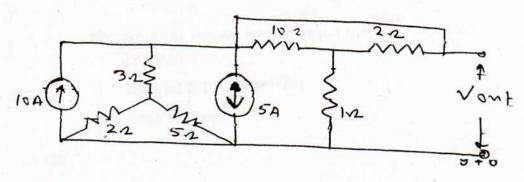
8. a) For the parallel circuit shown in figure. Find the magnitude of current in each. Branch & the total current. What is the phase angle between the applied voltage & current?



- b) Two impedances $Z_1 = 20 + j \cdot 10 & Z_2 = 10 j \cdot 30$ are connected in parallel & this combination is connected in series with $Z_3 = 30 + j \cdot X$. Find the value of X which will produce resonance. 9 + 6
- a) Find Z-parameters of the network shown in figure.
 Hence find the ABCD parameters for the same network.


33306

b) Calculate the effective inductance of the circuit shown in figure



10 + 5

10. a) Determine the load resistance to receive maximum power from the source. Also find the maximum power delivered to the load in the circuit shown.

b) Determine the output voltage $V_{\rm out}$ in the circuit shown.

33306

7

[Turn over

- 11. a) A three phase, balanced delta connected load of $(4+j8)\Omega$ is connected across a 400 V, 3 ϕ balanced supply. Determine the phase currents & line currents. Assume the phase sequence to be RYB. Also calculate the power drawn by the load.
 - b) Calculate the total power input & readings of the two wattmeters connected to measure power in a three phase balanced load if the reactive power input is 15 kVAR & load p.f. is 0.8.

Я