http://www.makaut.com

ANALOG ELECTRONIC CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$

- The output of an integrator having square wave as input is
 - a) Triangular
- b) Ramp

c) Spike

- d) Parabolic.
- ii) CE amplifier is used as
 - a) radio frequency amplifier
 - b) audio frequency amplifier
 - c) tuned amplifier
 - d) microwave amplifier.

- iii) The maximum efficiency of transformer coupled class A power amplifier is
 - a) 25%

b) 50%

c) 79%

- d) 100%.
- iv) Power amplifier handles signal which is
 - a) Small

b) Very small

c) Large

- d) None of these.
- v) A V-I converter is a/an
 - a) transconductance amplifier
 - b) transresistance amplifier
 - c) current amplifier
 - d) operational amplifier.
- vi) To improve the efficiency of the amplifier we have to
 - a) reduce the power dissipation rating
 - b) reduce supply voltage
 - c) reduce the load power
 - d) reduce unwanted power loss.

3/30253

http://www.makaut.com

I Turn over

3/30253

2

http://www.makaut.com

CS/B.TECH/EE/EEE/ICE/ODD SEM/SEM-3/EC(EE)-301/2016-17

vii) An instrumentation amplifier

- is a differential amplifier a)
 - has a gain less than 1 b)
 - has very high output impedance c)
 - has low CMRR. d)
- viii) A class B push-pull power amplifier has an a.c. output of 10 watts. The d.c. power from the power supply under ideal condition is
 - 10 watts

- 15 watts
- 12.75 watts c)
- 20 watts.
- Which of the following oscillators is used for the generation of high frequencies?
 - R-C phase shift a)
- Wien-bridge
- Blocking oscillator
- L-C oscillator. d)
- The Schmitt Trigger is also known as
 - squaring circuit a)
 - blocking oscillator bì
 - sweep circuit c)

3/30253

d) astable multibibrator.

3

| Turn over

http://www.makaut.com

CS/B.TECH/EE/EEE/ICE/ODD/SEM/SEM/3/EC(EE)/301/2016/47

- xi) If three cascaded stages of amplifiers have gains 10, 20, 30, the overall gain will be
 - a) 200

b) 400

6000

1200.d)

- xii) For PLL
 - capture range is less than lock range
 - b) capture range is greater than lock range
 - capture range is equal to lock range c)
 - no relation with them.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

http://www.makaut.com

- What are the criteria of an ideal instrumentation amplifier? What are its applications? Draw the circuit diagram of an instrumentation amplifier. 1 + 1 + 3
- Draw the h-parameter equivalent circuit of low frequency CE mode transistor amplifier and hence calculate the current gain in terms of h-parameters.
- Explain the working principle of Monostable Multivibrator using 555 timer with proper diagram. Find the expression for the pulse width. 3 + 2

3/30253

4

http://www.makaut.com

CS/B.TECH/EE/EEE/ICE/ODD SEM/SEM-3/EC(EE)-301/2016-17

What is the ripple factor? How can it be removed from the output of a rectifier? Explain with suitable diagram.

2 + 3

Explain the difference between constant current bias and current mirror.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. Describe the function of an OP-AMP as -
 - (i) Logarithmic amplifier
 - (ii) Integrator
 - (iii) Voltage comparator
 - (iv) Current to voltage converter
 - (v) Schmitt trigger.

 5×3

http://www.makaut.com

- 8. a) What are the advantages of push-pull amplifier?
 Why is the push-pull circuit called so?
 - b) Draw and explain the circuit of a class A power amplifier.
 - c) What is cross-over distortion ? How is it eliminated ?

d) An astable multivibrator using 555 timer, has $R_A=6\cdot 8$ K, $R_B=3\cdot 3$ K and $C=0\cdot 1$ μF . Calculate —

- (i) T_{HIGH}
- (ii) T_{LOW}
- (iii) free running frequency
- (iv) duty cycle.

2 + 6 + 3 + 4

http://www.makaut.com

- a) Draw the circuit diagram of a two stage RC coupled CE transistor amplifier. Show how the magnitude and phase angle of its voltage gain vary with frequency.
 - b) The mid-band gain of an RC coupled amplifier is 120. At frequencies of 100 Hz and 100 kHz, the gain falls to 60. Determine the lower and upper half power frequencies.
 - c) Give the circuit of a Colpitts oscillator and explain its action. What is the approximate frequency of oscillation? 6+3+6
- 10. a) Draw and explain a circuit which uses a diode to compensate for changes
 - (i) in V_{BE}
 - (ii) in I_{CO} .

3/30253

6

3/30253 5 | Turn over

b) Quiescent levels of the network in the figure are given below as:

 I_{CQ} = 1·1 mA and V_{CEQ} = 3·7 V, when V_{CC} = 10 V. R_B =250 K and transistor parameters are β = 90 and V_{BE} = 0·7 V and at room temperature. Find R_C and R_E .

Explain the consequences of Thermal run-away.

6 + 5 + 4

- 11. Write short notes on any three of the following: 3×5
 - a) Phase Locked Loop
 - b) Astable Multivibrator
 - c) Colpitts Oscillator
 - d) High frequency model of a transistor
 - c) Precision rectifier.

ппр://www.maкапг.co