	Utech
Name :	
Roll No.:	To Descript Sample and Column
Invigilator's Signature :	

CS/B.TECH(EEE(O)/PWE(O)/BME(O)/EE(O))/SEM-3 /EE-302/2011-12

2011 ELECTRICAL AND ELECTRONIC MEASUREMENTS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The scale of the moving iron instrument is
 - a) linear

- b) non-linear
- c) both (a) and (b)
- d) none of these.
- ii) The breaking torque provided by a permanent magnet in a single phase energymeter is proportional to the
 - a) square of the flux of the permanent magnet
 - b) speed of the meter
 - c) distance of the permanent magnet from the centre of the revolving disc
 - d) all of these.

3205(O) [Turn over

- iii) Capacitance can be measured by
 - a) Maxwell's bridge
 - b) DeSauty's bridge
 - c) Wheatstone bridge
 - d) None of these.
- iv) Frequency can be measured by
 - a) Maxwell's bridge
 - b) Heaviside-Cambell bridge
 - c) Schering bridge
 - d) Wien's bridge
- v) In induction type energy meters, high driving torque can be obtained by
 - a) Making the disc purely resistive
 - b) Making the phase difference between the two operating fluxes as large as possible
 - c) Making the disc impedance as low as possible
 - d) All of the above.

- vi) Creeping in a single phase energy meter can be avoided by
 - a) Using good quality bearings
 - b) Increasing strength of the brake magnet
 - c) Placing small iron piece on edge of the rotating disc
 - d) All of these.
- vii) Gauge factor of strain gauge is given as
 - a) $G_f = (\Delta R/R)/(\Delta L/L)$
- b) $G_f = (\Delta L/L)/(\Delta R/R)$
- c) $G_f = (\Delta R/R)/(\Delta D/D)$
- d) none of these.
- viii) Holes are drilled on opposite sides of the disc of an inducting type energymeter to
 - a) avoid creep on no load
 - b) balance the disc
 - c) dissipate the energy due to eddy currents
 - d) increase the deflecting torque.
- ix) The secondary of a CT is
 - a) never left short-circuited
 - b) never left open circuited
 - c) always kept open-circuited
 - d) none of these.

CS/B.TECH(EEE(O)/PWE(O)/BME(O)/EE(O))/SEM-3/EE-302

- a) square waveform
- b) sawtooth waveform
- c) sine waveform
- d) output from a Built-in-clock.
- xi) The Bridge used for measuring dissipation factor of a capacitor is
 - a) Campbell's bridge b) Schering bridge
 - c) Anderson's bridge d) Owen's bridge.
- xii) The Insulation resistance of a domestic wiring is to be measured. The instrument preferred is
 - a) Kelvin's double ridge b) Ohm-meter
 - c) Potentiometer d) Megger.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Develop the torque equation of the moving coil instrumentation.

- 3. How can a potentiometer be used
 - a) For calibration of a voltmeter?
 - b) For calibration of wattmeter?
- 4. Describe with a neat diagram, the Wien bridge method for measuring the unknown frequency.
- 5. What is phantom loading? Explain with an example how it is more advantageous than testing with direct loading. 1 + 4
- 6. Explain the procedure of measurement of high voltage by *dc* potentiometer. 5

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define the terms 'Accuracy', 'Precision', 'Resolution'.
 - b) What are the main causes for instrumental errors?
 - c) The output voltage of an amplifier was measured at eight different intervals using the same digital voltmeter with the following results: 20.00, 19.80, 19.85, 20.05, 20.10, 19.90, 20.25, 19.95. Which is the most precise measurement?

3205(O) 5 [Turn over

tor is 3.0A, but

d) The current through a resistor measurement gives a value of 2.9A.

Calculate the following:

- (i) Absolute error?
- (ii) Per cent error?
- (iii) Per cent accuracy of the measurement?

3 + 6 + 3 + 3

- 8. a) Draw and explain different blocks of a CRO. Write the operating principle of a CRT.
 - b) What are the difference between dual trace and dual beam oscilloscopes? 4 + 8 + 3
- 9. a) What are limitations of Wheatstone bridge for resistance measurement?
 - b) How can low resistance be measured by Kelvin's Double bridge method?
 - c) Why are guard circuits used for measurement of high resistance?
 - d) Describe Murray Loop test for locating ground fault or short-circuit fault in cable. 2 + 5 + 3 + 5

3205(O)

- 10. a) Write briefly about the construction of an electrodynamometer type instrument.
 - b) Derive the torque equation of the instrument when an alternative current is passed through the coil.
 - c) List the principal errors of this type of instrument.

5 + 7 + 3

- 11. a) Draw the equivalent circuit and phasor diagram of a current transformer.
 - b) Derive the expression for ratio and phase angle errors.
 - c) Explain the difference between CT and PT. 4 + 8 + 3
- 12. Write short notes on any three of the following: 3×5
 - a) Signal generator
 - b) Frequency counter
 - c) Rectifier type instrument
 - d) Electrostatic instrument
 - e) Megger.