	viesh
Name	
	-6

Invigilator's Signature : \qquad

CS/B.Tech(ECE-NEW)/SEM-7/EC-704B/2009-10 2009

ADVANCED ENGINEERING MATHEMATICS FOR ELECTRONIC ENGINEERING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Guestions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The value of $\int^{1}\left[P^{n}(x)\right]^{2} \mathrm{~d} x$ is equal to - 1
a) 0
b) $\frac{n}{2 n+1}$
c) $\frac{n}{2 n-1}$
d) $\frac{2}{2 n+1}$.

CS / B.Tech(ECE-NEW)/SEM-7 /EC-704B / 2009-10
ii) The solution to the partial differential equation $Z=p x+q y+p^{2}+q^{2}$ is
a) $\quad Z=a x+b y+a^{2}+b^{2}$
b) $\quad Z=a x+b y$
c) $\quad Z=a x+b y+a^{2}-b^{2}$
d) $\quad Z=a x-b y$.
iii) The product of the eigenvalues of a matrix A is equal to
a) the trace of A
b) the determinant of A
c) 1
d) 0 .
iv) The determinant of a skew-symmetric matrix of even order is
a) 1
b) 0
c) perfect square
d) an odd number.
v) Let $A\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. Then A is
a) orthogonal
b) symmetric
c) skew-symmetric
d) none of these.
a) Unitary
b) Hermition
c) Skew Hermitian
d) Null.
vii) The rank of a diagonal matrix of order $n \infty n$ is
a) 2
b) $n-1$
c) n
d) none of these.
viii) If $\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0$ is the characteristic equation of a square matrix A, then A^{-1} is
a) $A^{2}-6 A+9 I$
b) $\frac{1}{4} A^{2}-\frac{3}{2} A+\frac{9}{4} I$
c) $\frac{1}{4} A^{2}-\frac{3}{2} A+\frac{9}{4}$
d) $A^{2}-6 A+9$.
ix) Co-factor of 2 in $\left|\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right|$ is
a) -2
b) 2
c) 0
d) 1 .
x) The value of $\oint_{C} \frac{e^{z}}{(z-2)} d z$ where $C=|z-2|=4$ is
a) $2 \pi i$
b) $\quad 2 \pi i e^{2}$
c) πi
d) $\pi i e$
xi) Residue of $f(z)=\frac{2+3 \sin \pi z}{z(z-1)^{2}}$ is

a) 1
b) 3
c) 2
d) i.
xii) The complementary function of

$$
\left(D^{2}-D D^{\prime}-D D^{\prime 2}\right) z=x y \text { is }
$$

a) $z=(y+2 x)(y-3 x)$
b) $\quad z=\psi_{1}(y-2 x) \psi_{2}(y+3 x)$
c) $z=\psi\{(y-2 x)(y+3 x)\}$
d) none of these.
xiii) The solution of the equation $x \frac{\mathrm{~d}^{2} Z}{\mathrm{~d} x^{2}}=\frac{\partial z}{\partial x}$ is
a) $z=\frac{x^{2}}{2} \quad \phi(y)+\phi(y)$
b) $z=\frac{x^{2}}{2} \quad \phi(y)+k$
c) $z=x^{2} z+z$
d) none of these.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. Express $f(x)=x^{3}-5 x^{2}+x+2$ in terms of Legendre's polynomials.
3. Solve $\left(x^{2}-y^{2}-z^{2}\right) \quad p+2 x y q=2 x z$.
4. Find the inverse Laplace transform of

$$
\frac{2 s^{2}-4}{(s+1)(s-2)(s-3)} .
$$

5. Find the rank of the matrix
 reducing to the normal form.
6. If $f(z)=u+i v$ is an analytic function of $z=x+i y$ and ψ any function of x and y with differential coefficient of first and second order then prove that
$\left(\frac{\partial \psi}{\partial x}\right)^{2}+\left(\frac{\partial \psi}{\partial y}\right)^{2}=\left\{\left(\frac{\partial \psi}{\partial u}\right)^{2}+\left(\frac{\partial \psi}{\partial v}\right)^{2}\right\}\left|f^{\prime}(z)\right|^{2}$.
7. Show that $u=3 x y^{2}$ is harmonic and find the corresponding analytic function.

> GROUP - C
> (Long Answer Type Questions)
> Answer any three of the following. $\quad 3 \times 15=45$
8. a) A voltage $E e^{-a t}$ is applied at $t=0$ to a circuit of inductance L and resistance R. Using Laplace transformation, show that the current at time t is

$$
\begin{equation*}
\frac{E}{R-a L}\left(e^{-a t}-e^{-R t / L}\right) \tag{7}
\end{equation*}
$$

b) Using Laplace transform solve the following simultaneous equations :

$$
\begin{align*}
& \frac{\mathrm{d} x}{\mathrm{~d} t}-y=e^{t} ; \frac{\mathrm{d} x}{\mathrm{~d} t}+x=\sin t \operatorname{given} x(0)=1, \\
& y(0)=0 \tag{8}
\end{align*}
$$

CS / B.Tech(ECE-NEW)/SEM-7 /EC-704B / 2009-10
9. a) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ " $x>0, t>Q$ subject to the conditions
i) $\quad u=0$ when $x=0, t>0$
ii) $u=\left\{\begin{array}{l}1,0<x<1 \\ 0, x \geq 1\end{array}\right.$ when $t=0$ and
iii) $u(x, t)$ is bounded.
b) Prove that

10. a) Prove that $\int_{m}^{1} P_{m}(x) P_{n}(x) \mathrm{d} x=0 \quad$ if $m \neq n$
b) Show that the generating function for Bessel's functions of integral order is $e^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}$
11. a) Define a harmonic function. Show that real and imaginary parts of an analytic function are harmonic functions which satisfy Cauchy-Reimann equations. Also show that if the harmonic functions u and v satisfy these equations, then $u+i v$ is an analytic function. 8
b) Show that the functions $u(x, y)=e^{x}$ cosy is harmonic. Determine the harmonic function $v(x, y)$ and the analytic function $f(z)=u+i v$.
circle $|z|=2$.
b) Calculate the residue of $\frac{z+1}{z^{2}-2 z}$ at its poles. 5
c) Evaluate $\int|z| \bar{z} d z$ where C is the closed curve c
consisting of the upper semi-circle $|z|=1$ and the segment $-1 \leq x \leq t$.

