	/ Utean
Name :	\A/
Roll No.:	In Planning (V'Elementary Bull Explana)
Kott No.:	
Invigilator's Signature :	

ADVANCED ENGINEERING MATHEMATICS FOR ELECTRONIC ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

$$10 \times 1 = 10$$

- i) The value of $\int_{-1}^{1} [P^{n}(x)]^{2} dx$ is equal to
 - a) 0

b) $\frac{n}{2n+1}$

c) $\frac{n}{2n-1}$

d) $\frac{2}{2n+1}$.

77871

[Turn over

ii) The solution to the partial differential equation

$$Z = px + qy + p^2 + q^2$$
 is

a)
$$Z = ax + by + a^2 + b^2$$

b)
$$Z = ax + by$$

c)
$$Z = ax + by + a^2 - b^2$$

- d) Z = ax by.
- iii) The product of the eigenvalues of a matrix A is equal to
 - a) the trace of A
- b) the determinant of A

c) 1

- d) 0.
- iv) The determinant of a skew-symmetric matrix of even order is
 - a) 1

- b) 0
- c) perfect square
- d) an odd number.
- v) Let $A \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. Then A is
 - a) orthogonal
- b) symmetric
- c) skew-symmetric
- d) none of these.

- Inverse of a unitary matrix is
 - a) Unitary
- b) Hermition
- Skew Hermitian c)
- Null. d)
- The rank of a diagonal matrix of order $n \propto n$ is
 - a) 2

b) n-1

c) n

- d) none of these.
- viii) If $\lambda^3 6\lambda^2 + 9\lambda 4 = 0$ is the characteristic equation of a square matrix A, then A^{-1} is

 - a) $A^2 6A + 9I$ b) $\frac{1}{4} A^2 \frac{3}{2} A + \frac{9}{4} I$
 - c) $\frac{1}{4} A^2 \frac{3}{2} A + \frac{9}{4}$ d) $A^2 6A + 9$.
- ix) Co-factor of 2 in $\begin{vmatrix} 2 & 1 \\ 0 & -2 \end{vmatrix}$ is
 - a) - 2

b) 2

c) 0

- d) 1.
- The value of $\oint_C \frac{e^z}{(z-2)}$ dz where C = |z-2| = 4 is
 - $2\pi i$ a)

b) $2\pi i e^{2}$

c) πi d) $\pi i e$.

b) 3

d) i.

$$(D^2 - DD' - DD'^2)$$
 z = xy is

a)
$$z = (y + 2x)(y - 3x)$$

b)
$$z = \psi_1 (y - 2x) \psi_2 (y + 3x)$$

c)
$$z = \psi \{ (y - 2x) (y + 3x) \}$$

d) none of these.

xiii) The solution of the equation $x \frac{d^2z}{dx^2} = \frac{\partial z}{\partial x}$ is

a)
$$z = \frac{x^2}{2} \phi(y) + \phi(y)$$

b)
$$z = \frac{x^2}{2} \phi(y) + k$$

c)
$$z = x^2 z + z$$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Express $f(x) = x^3 5x^2 + x + 2$ in terms of Legendre's polynomials.
- 3. Solve $(x^2 y^2 z^2)$ p + 2xyq = 2xz.
- 4. Find the inverse Laplace transform of

$$\frac{2s^2-4}{(s+1)(s-2)(s-3)}.$$

77871

- 5. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & -4 & 7 \\ -1 & -2 & -1 & -2 \end{bmatrix}$ by reducing to the normal form.
- 6. If f(z) = u + iv is an analytic function of z = x + iy and ψ any function of x and y with differential coefficient of first and second order then prove that

$$\left(\frac{\partial \psi}{\partial x}\right)^2 + \left(\frac{\partial \psi}{\partial y}\right)^2 = \left\{ \left(\frac{\partial \psi}{\partial u}\right)^2 + \left(\frac{\partial \psi}{\partial v}\right)^2 \right\} \mid f'(z) \mid^2.$$

7. Show that $u = 3xy^2$ is harmonic and find the corresponding analytic function.

GROUP - C

(Long Answer Type Questions) Answer any *three* of the following. $3 \times 15 = 45$

8. a) A voltage Ee^{-at} is applied at t=0 to a circuit of inductance L and resistance R. Using Laplace transformation, show that the current at time t is

$$\frac{E}{R-\alpha L} \left(e^{-\alpha t} - e^{-Rt/L} \right)$$
 7

b) Using Laplace transform solve the following simultaneous equations :

$$\frac{\mathrm{d}x}{\mathrm{d}t} - y = e^t \; ; \; \frac{\mathrm{d}x}{\mathrm{d}t} + x = \sin t \text{ given } x (0) = 1,$$

$$y(0) = 0$$

i)
$$u = 0$$
 when $x = 0$, $t > 0$

ii)
$$u = \begin{cases} 1, 0 < x < 1 \\ 0, x > 1 \end{cases}$$
 when $t = 0$ and

iii)
$$u(x, t)$$
 is bounded.

b) Prove that

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{3}.$$
 5

10. a) Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$$
 if $m \neq n$. 7

- b) Show that the generating function for Bessel's functions of integral order is $e^{\frac{1}{2}x\left(t-\frac{1}{t}\right)}$.
- 11. a) Define a harmonic function. Show that real and imaginary parts of an analytic function are harmonic functions which satisfy Cauchy-Reimann equations. Also show that if the harmonic functions u and v satisfy these equations, then u + iv is an analytic function. 8
 - b) Show that the functions $u(x, y) = e^x \cos y$ is harmonic. Determine the harmonic function v(x, y) and the analytic function f(z) = u + iv.

77871 6

- circle |z| = 2.
- b) Calculate the residue of $\frac{z+1}{z^2-2z}$ at its poles. 5
- c) Evaluate $\int |z| \overline{z} dz$ where C is the closed curve C consisting of the upper semi-circle |z| = 1 and the segment $-1 \le x \le t$.

77871

5