(B) 3.32 bits

(B) 1.19 kbps

(D) 19.97 kbps

(B) H(Y)-H(X)

(B) $(GH)^T = 0$

(D) $HG^{T} = 0$

(D)H(X)-H(Y/X)

(vi) If a telephone channel has bandwidth 3000Hz and SNR = 20dB then channel

(D) none of these

3×5 = 15

3	
20	
듓	
kaut.	
=	
•	
Com	
₿	
3	

(ix) A (7,4) linear block code with minimum distance guarantees error detection

 $(A) \le 4$ bits (B) ≤ 3 bits (C)≤2 bits $(D) \le 6 \text{ bits}$

(x) The efficiency of Huffman code is linearly proportional to

(viii) The condition of a dual code in case of linear block code is

(A) average length of the code

(B) average entropy

(C) maximum length of the code

Answer any three questions.

CS/B.Tech/ECE/Even/Sem-6th/EC-604B/2015

(vii) For a noiseless channel I(X; Y) is

(v) I decit equals (A) I bit

(C) 10 bits

capacity is (A) 3 kbps

(C) 2.19 kbps

 \mathcal{A}) H(X)-H(Y)

(C) H(X)

JATGH1 = 0

of

 $(C) G^T H^T = 0$

(D) none of these

CS/B.Tech/ECE/Even/Sem-6th/EC-604B/2015

WEST BENGAL UNIVERSITY OF TECHNOLOGY

EC-604B

INFORMATION THEORY AND CODING

Full Marks: 70 Time Allotted: 3 Hours

> The questions are of equal value. The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP A (Multiple Choice Type Questions)

Answer all questions.

 $10 \times 1 = 10$

- (1) The number of undetectable errors for a (n, k) linear code is
 - (A) 2^{n-1}

(B) 2^{n}

(C) $2^n - 2^k$

(D) 2*

- (ii) Entropy represents
 - (A) amount of information
- (B) rate of information
- (C) measure of uncertainty
- (D) probability of message
- (iii) The mutual information of a channel with independent input and output is
 - (A) zero

(B) constant

(C) variable

- (D) infinite
- (iv) In block coding, if k = 2 and n = 3, then number of invalid code words is
 - (A)8

(B)4

(C) 2

6412

(D) 6

Turn Over

6412

http://www.makaut.com

2

GROUP B

(Short Answer Type Questions)

Draw the state diagram for (2, 1, 2) convolution code and explain,

CS/B.Tech/ECE/Even/Sem-6th/EC-604B/2015

- Define the channel transition matrix and with suitable example show at least 3channel transition matrix.
- P(x₃) = 0.4, P(x₂) = 0.17, P(x₃) = 0.18, P(x₄) = 0.1 and P(x₅) = 0.15 for 5 symbol x₁, x₂, x₃, x₄ and x₅. Construct a Shannon Fano code and find out its efficiency.
- Explain Shannon Hartley law regarding channel capacity. What is mutual information?
- Consider g(x) = 1+x+x³ for a (7, 4) cyclic code. Find the generator matrix of systematic form.

GROUP C (Long Answer Type Questions)

Answer any three questions.

http://www.makaut.com

6412

3×15 = 45 3+2+10

5

5

- (a) Define code rate and block length.
- (b) Give diagrammatic representation of block encoder.
- (c) The generator matrix of a (7,4) block code is given by

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Find H, the parity check matrix of the code
- (ii) Find the syndrome for the received vector 1101101. Is this a valid code vector?
- (iii) Find all code words of the code.
- (iv) What is error correcting capability of the code?
- (v) What is error detecting capability of the code?
- 8. (a) What are cyclic codes? Why are they called subclass of block code?

5+4+6

- (b) Write the advantages and disadvantages of cyclic code.
- (c) Prove that the generator polynomial f(x) of an (n, k) cyclic code is a factor of $1 + x^n$.

3

Turn Over

CS/B.Tech/ECE/Even/Sem-6th/EC-604B/2015

- (a) Find the generator polynomial of a triple error correcting BCH code with block length n = 31 over GF(2³).
 - (b) What are the advantages of turbo code? Discuss how it is implemented?
- 10.(a) What do you mean by entropy of a source and mutual information of a (2-5)+5+ communication channel?
- (b) Consider a source X which produces five symbols with probabilities $\frac{1}{2}$.

$$\frac{1}{4}$$
, $\frac{1}{8}$, $\frac{1}{16}$, and $\frac{1}{16}$. Find the source entropy.

- (c) Briefly discuss about the channel capacity of a discrete memoryless channel. Determine the channel capacity of a noiseless channel.
- Write short notes on any three of the following:

3×5

- (a) Standard array decoding (b) Golay code
- (a) Huffman coding
- (d) Cyclic burst
- (c) Vacrai decoding.

http://www.makaut.com

6412

4