http://www.makaut.com

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the $10 \times 1 = 10$ following:
 - The digital system in $y[n] = x[n^2]$ is
 - Linear and causal
 - Linear and non-causal
 - Non-linear and causal c)
 - Non-linear and non-causal. d)

a)
$$\frac{1}{(1-Z^{-1})}$$
 b) $\frac{Z}{1-Z^{-1}}$

b)
$$\frac{Z}{1-Z^{-}}$$

c)
$$\frac{1}{[Z(1-Z^{-1})]}$$
 d) $(1+Z^{-1})$.

d)
$$(1+Z^{-1})$$

iii) If $x[n] = \{1,0,0,1\}$, the DFT value of X(0) is

b)
$$1 + j$$

http://www.makaut.com

d)
$$1 - j$$
.

Infinite memory system is also known as

FIR system

b) IIR system

Digital system

Analog system.

v)
$$\left(\frac{1}{2}\right)^n u[n]$$
 is

energy signal

power signal

both (a) and (b) C)

none of these.

The convolution of u[n] with u[n-4] at n=5 is

5 a)

b)

c)

d) 0.

6/60206

2

http://www.makaut.com

CS/B.TECH/ECE/EVEN/SEM-6/EC-602/2015-16

- vii) The value of twiddle factor W_8^4 is
 - a) 5

b) 2

C) 1

- d) 0.
- viii) Zero padding a signal
 - reduces aliasing
 - increases time resolution
 - increases frequency resolution
 - has no effect.
- If x[n] is a sequence of L samples and of M samples, the circular convolution of x[n] and h[n] contains
 - $\max(L, M)$ samples b) (L + M 1) samples
 - (L+M-2) samples d) (L+M) samples.
- Overlap save method is used to find X)
 - circular convolution
 - linear convolution
 - DFT

6/60206

Z-transform.

Turn over

CS/B.TECH/ECE/EVEN/SEM-6/EC-602/2015-16

- Number of multiplications in FFT algorithm is
 - $n\log(n)$

- $(n/2)*\log(n)$
- $(n/2) * \log(n/2)$
- d) $n\log(n/2)$
- xii) If $F_{\rm si}$ is the minimum sampling rate, $F_{\rm max}$ is the highest frequency available in the analog signal, then Nyquist rate is
 - a) $F_{si} = 2F_{max}$ b) $F_{si} = F_{max}$
 - c) $F_{si} > 2F_{max}$
- d) none of these.

GROUP -- B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- A discrete time LTI system with impulse response $h[n] = \{1,1,1\}$ is excited by a sequence $x[n] = \{4,3,2,1\}$. Determine the output y[n] of the system.
- State and prove final value theorem for Z-transform.

2 + 3

http://www.makaut.com

6/60206

http://www.makaut.com

4

http://www.makaut.com

3

- 4. What do you mean by even and odd component of a signal? Show that the energy of a real valued energy signal is equal to the sum of the energies of its even and odd components.
 2+3
- 5. Find out the DFT of $x[n] = \{2,1,2,1\}$.
- 6. Find the Fourier transform of the signal $X(n) = 3^{n}u(-n) 3^{-n}u(n).$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) What is the basic difference between s-plane and z-plane? How is the mapping done from s-plane to z-plane?
 2+3
 - b) Find the inverse Z-transform of

$$X(Z) = \frac{z(z+1)}{(z-1)(z-3)}$$
, ROC: $|Z| > 3$, using

- i) Partial fraction expansion method
- ii) Residue method
- iii) Convolution method.

10

6/60206

[Turn over

CS/B.TECH/ECE/EVEN/SEM-6/EC-602/2015-16

- 8. a) Find the circular convolution of $x[n] = \{1,2,3,1\}$ with $h[n] = \{1,1,1\}$ using concentric circle method.
 - b) Why the result of circular convolution is not same as linear convolution? Give an idea how to get the result of linear convolution using circular convolution.

5

http://www.makaut.com

- What is the physical significance of convolution sum?
- 9. Determine the impulse response of the system with x(n) as input and y(n) as output shown in figure below. Impulse responses of the subsystems are $h_1(n) = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{2}\right\}, \quad h_2(n) = h_3(n) = (n+1)u(n)$ and $h_4(n) = \delta(n-2)$. Also determine expression for frequency response of the system.

6/60206

http://www.makaut.com

6

http://www.makaut.com

5

- CS/B.TECH/ECE/EVEN/SEM-6/EC-602/2015-16
- out the DFT sequence $x[n] = \{1, 2, 3, 4, 3, 2, 1\}$ using DIT-FFT algorithm. 12
 - What is bit reversal? 3
- What is meant by order of a filter? 2 11. a)
 - Design a digital Butterworth IIR filter for the given frequency response:

$$0.85 \le |H(e^{j\omega})| \le 1$$
 for $0 \le \omega \le 0.2\pi$

$$|H(e^{j\omega})| \le 0.02$$
 for $0.45\pi \le \omega \le \pi$

Use impulse invariant method.

- What are the major factors to be taken into consideration in determining the choice of a specific system realisation from amongst many 3 possible representations?
- What is the difference between FIR and IIR filter? 4 12. a)
 - What is the utility of Windowing technique? 3

7 6/60206

Turn over

10

CS/B.TECH/ECE/EVEN/SEM-6/EC-602/2015-16

A filter is to be designed with the following desired frequency response:

$$\begin{split} H_d(e^{j\omega}) &= 0 \;, \qquad -\frac{\pi}{4} \leq \omega \leq \frac{\pi}{4} \\ \\ &= e^{-j2\omega} \;, \; \frac{\pi}{4} \leq \omega \leq \pi \end{split}$$

Determine the filter coefficients $h_d(n)$ if the window function is defined as

$$\omega(n) = 1, \ 0 \le n \le 4$$

$$= 0, \text{ elsewhere.}$$

http://www.makaut.com

- 13. Write short notes on any three of the following: 3×5
 - Decimation in frequency algorithm (DIF-FFT)
 - Bilinear transformation
 - Parseval's relation for energy signal
 - Design of FIR filter using Fourier series
 - Architecture of TMS320C5416 processor.

6/60206

http://www.makaut.com

8

http://www.makaut.com

http://www.makaut.com