CS/B.Tech/ECE/Even/Sem-6th/EC-602/2015

WEST BENGAL UNIVERSITY OF TECHNOLOGY

EC-602

DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The questions are of equal value. The figures in the margin indicate full marks Candidates are required to give their answers in their own words as far as practicable

GROUP A (Multiple Choice Type Questions)

Answer any ten questions.

http://www.makaut.com

 $10 \times 1 \simeq 10$

http://www.makaut.com

- (i) The system $y(n) = e^{x(n)}$ is
 - (A) linear time invariant
- non linear time invariant
- (C) linear time variant
- (D) none of these
- (ii) Why 16 point DFT is preferable than 4 point DFT?
 - Resolution of spectrum is poor for 4 point DFT than 16 point DFT
 - (B) Resolution of spectrum is high but not reliable in 4 point DFT
 - (C) Calculation of 4 point DFT is more complex
 - (D) None of these
- (iii) $If(x(n) = \{1, 0, 0, 1\}$, the DFT value x(0) is,

(B) 1 + i

(D) 1 - j

Turn Over 6206

CS/B.Tech/ECE/Even/Sem-6th/EC-602/2015

(iv) Overlap save method is used to find

(A) Circular convolution

- (B) linear convolution
- (D) none of these
- (v) The direct evaluation of DFT requires
 - (A) N² multiplication N² additions
 - N^2 multiplication N(N-1) additions
 - (C) N(N-1) multiplication N^2 additions
 - (D) N(N-1) multiplication N(N-1) additions
- (vi) The value of the twiddle factor W_8^4 is given by
 - (A) 1

(B) - i

(D) - 1

$$X(n) = \left(\frac{1}{3}\right)^n u(n)$$
 is

(B) power signal

- (D) none of these
- (viii) Zero padding of a signal
 - (A) reduces aliasing

- (Dincreases trequency
- (C) increases time resolution
- (D) has no effect
- (ix) A signal is a power signal if

$$F < \infty, P = 0$$

(B)
$$P < \infty, E = 0$$

(C)
$$P = \infty, E < \infty$$

(D)
$$P = \infty, E = 0$$

- (x) The convolution of u(n) with u(n-4) at n=5 is
 - (A)5
- (B)2

- (D)0
- (xi) For an analog signal $x(t) = 3\cos(50\pi t) + 10\sin(300\pi t)$, the Nyquist sampling rate is
 - (A) 150 Hz

(C) 25 Az

6206

CS/B.Tech/ECE/Even/Sem-6th/EC-602/2015

http://www.makaut.com

- (xii) An LTI system having system function H(z) is said to be stable if,
 - (A) all the poles of H(z) are located on the origin of the unit circle in z-plane
 - (B) all the poles of H(z) are located outside the unit circle in z-plane
 - (C) all the poles of H(z) are located on the unit circle in z-plane
 - (1)) all the poles of H(z) are located inside the unit circle in z-plane

GROUP B (Short Answer Type Questions)

	Answer any three questions.	3×5 - 15
2.	What is the input sequence $x(n)$ that will generate the output sequence $y(n) = \{1, 5, 10, 11, 8, 4, 1\}$ for a system with impulse response $h(n) = \{1, 2, 1\}$	5
3.	Determine the Z-Transform of the following sequence and find ROC $x(n) = (n+2)(1/2)^n u(n)$.	5
4	How do you take care warping effect for designing an IIR filter using Bilinear Transform?	5
5.	Find the inverse Z-Transform of $X(z) = z^2/(z^2 - 3z + 2)$, ROC: $ z > 2$	5
6.	What is convolution sum? Find the convolution sum of the Sequences $x(n) = \{2, -1, 3, -2\}$ and $h(n) = \{2, -1, 3, -2, 3\}$	1+4
7.	Define BIBO stability criteria Verify the stability of the system having impulse response $h(n) = (1/2)^n u(n)$.	2+3
8	For the Sequence $x(n) = \{1, 1, 0, 0, -1, -1, 0, 0\}$ find the 8-point DFT.	5
6206	3	Tum Over

CS/B.Tech/ECE/Even/Sem-6th/EC-602/2015

GROUP C (Long Answer Type Questions)

	Answer any three questions.	3-15 45
9 (a)	Determine the linear convolution and circular convolution of two sequences $v(n) = \{3, 2, 1, 2\}$ & $h(n) = \{1, 2, 1, 2\}$ by graphical method.	500
(b)	If a discrete-time LTI system is BiBO stable, show that the ROC of its system function $H(z)$ must contain the unit circle.	5
10.(a)	Determine the sectional convolution whose impulse response is $h(n) = \{1, 11\}$ and input signal is $X(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using overlap save method.	7
(b)	Design a symmetric linear phase FIR lowpass filter using rectangular window by taking 7 samples of window sequence and with a cut off frequency, $\omega_c = 0.2\pi \text{rad/sample}$.	8
11.(a)	Compute the 8-point DFT of the following sequence: $x(n) = \{0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0\}$	10+2+3
	Use in-place radix-2 decimation in time FFT algorithm.	
	What is a butterfly regarding FFT?	
(c)	What are the difference and similarities between DIT and DIF algorithms?	
12.(a)	For the analog transfer function $H(s) = \frac{2}{s^2 + 3s + 2}$, determine $H(z)$ using	5
	impulse invariant transformation if (i) $T = 1$ second and (ii) $T = 0.1$ second.	
(h)	Determine the inverse Z-transform of $X(z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}}$, if (i)	5+5
	ROC is , 'z>0.6 and (ii) ROC is, 0.2< z <0.6	
(کەنر	Write short notes on any three of the following: Causal and non-causal system	3+5
	Gibbs phenomenon	
(d)	Window method for designing FIR Filter TMS 320C 5416 architecture	
(0)	Recursive and Non-recursive system.	
6206	4	

10