3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 CONTROL SYSTEM

SEMESTER - 5

Time: 3 Hours]			(175 - 11 A 4 1
rinc . o riours j		[Full N	[Full Marks : 70

One Graph sheet and one Semtlog sheet are provided on Page 33 and 35.

GROUP - A

(Multiple Choice Type Questions)

1.	Cho	ose the	$10 \times 1 = 10$					
	i)	A seco	is always					
		a) :	marginally stable	b)	stable			
•		c)	unstable	d)	none of these.			
	ii)	The R	outh-Hurwitz criterion gives					
		' a) 1	relative stability	b)	absolute stability			
		c) į	gain margin	d)	phase margin.			
	iii)	In z plane, the unit circle corresponds to						
		a) i	maginary axis of s-plane					
		b)]	positive real axis of s-plane	. 				
		c) 1	negative real axis of s-plane					
		d) d	origin of s-plane.					
	iv)	A speed control system is expressed by the transfer function						
	÷ .	$\frac{W(S)}{V(S)} = \frac{100}{2 + 10 \text{ S}}$. 1 volt of the input corresponds to an output of						
		a) :	100 rad/sec	b)	10 rad/sec			
		c) -	$\frac{100}{12}$ rad/sec	d)	50 rad/sec.			

- v) The error detector element in a control system gives
 - a) the sum of the reference signal and feedback signal
 - b) the sum of the reference signal and error signal
 - c) the difference of the reference signal and feedback signal
 - d) the difference of the reference signal and output signal.
- vi) State variable approach converts on n^{th} order system into
 - a) n second order differential equation
 - b) two differential equation
 - c) n first order differential equation
 - d) a lower order system.
- vii) For the system $\frac{C(S)}{R(S)} = \frac{16}{S^2 + 8S + 16}$, the nature of the time response will

be

a) overdamped

- b) underdamped
- c) criticallydamped
- d) undamped.
- viii) The type of transfer function denotes the number of
 - a) zeroes at origin

b) poles at infinity

c) poles at origin

- d) finite poles.
- ix) $V(x, y) = (x-y)^2$, this function is
 - a) positive definite
- b) negative definite
- c) positive semi-definite
- d) none of these.
- x) The lead compensator network is considered to be
 - a) high-pass filter

b) low-pass filter

c) equalizer

d) none of these.

- xi) For a stable system
 - a) the gain crossover occurs before phase crossover
 - b) the gain crossover occurs after phase crossover
 - the gain crossover and phase crossover frequencies are very close to each other
 - d) the gain crossover and phase crossover frequencies are same.
- xii) Without affecting steady state error, the maximum overshoot can be decreased by incorporating
 - a) derivative error control
- b) integral error control
- c) gain adjustment
- d) proportional error control.

, a

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

Using block diagram reduction technique find C/R.

3. A control system is described by the state equation:

$$\begin{bmatrix} \dot{x}_i \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Obtain the transfer function of the system.

55904 (16/12)

4. The characteristic equation of a system is given by

$$s^3 + 3ks^2 + (k+2)s + 4 = 0$$

Find the range of k for which the system is stable.

- 5. For a unity feedback system G(S) given below, find the time domain specification for a unit step input $G(S) = \frac{200}{S(S+2)}$.
- 6. A feedback control system is described as $G(S) = \frac{50}{S(S+2)(S+5)}$, $H(S) = \frac{1}{5}$. Evaluate static error constants, k_p , k_v and k_q for the system.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

7. The open loop transfer function of a unity feedback system is given by

$$G(S) = \frac{200}{S(S+4)(S+10)}$$
.

Construct the Bode plot and determine

- a) Gain crossover frequency
- b) Phase crossover frequency
- c) Gain margin
- d) Phase margin
- e) Comment on the stability of the system.
- 8. A unity feedback control system has an open loop transfer function

$$G(S) = \frac{K}{S(S+2)(S^{v}+6S+25)}, K \ge 0$$

Sketch the root locus of the system mentioning relevant steps.

Also find the value of K so that the system has a damping factor of 0.707.

55904 (16/12)

7

- 9. a) Find z transform of the following:
 - i) $f(t) = (1 e^{-5t})$ sampling time T = 0.2 sec
 - ii) $f(t) = e^{-dt} \cos wt$.
 - b) For the sampled data system shown in figure, find the output Y(k) for r(t) = unit step.

7 + 8

- 10. a) Obtain state transition matrix ϕ (t) from non-homogeneous state equation of a linear time invariant control system and list the properties of it.
 - b) The state model of the following system is given below:

$$\begin{bmatrix} \dot{x}_i \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
.

Determine the following:

- i) The state transition matrix
- ii) Test controllability of the system
- iii) Test observability of the system.

6 + 9

8

CS/B.TECH (ECE-NEW)/SEM-5/EC-513/08/(09)

11. Write short notes on any three of the following:

 3×5

- a) Fuzzy logic in control engineering
- b) Nyquist plot
- c) Phase trajectories using isocline method
- d) Common non-linearities in control system
- e) Lyapunov stability analysis.

END