| Nama :                                                                   |                                                  |                                           |    | Utech              |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|----|--------------------|--|--|--|--|
|                                                                          |                                                  |                                           |    |                    |  |  |  |  |
| Invigilator's Signature :                                                |                                                  |                                           |    |                    |  |  |  |  |
| CS/B.TECH (ECE-OLD)/SEM-4/EC-402/2012                                    |                                                  |                                           |    |                    |  |  |  |  |
| 2012                                                                     |                                                  |                                           |    |                    |  |  |  |  |
| DIGITAL ELECTRONICS CIRCUITS                                             |                                                  |                                           |    |                    |  |  |  |  |
| Time Allotted: 3 Hours                                                   |                                                  |                                           |    | Full Marks : 70    |  |  |  |  |
| The figures in the margin indicate full marks.                           |                                                  |                                           |    |                    |  |  |  |  |
| Candidates are required to give their answers in their own words         |                                                  |                                           |    |                    |  |  |  |  |
| as far as practicable.                                                   |                                                  |                                           |    |                    |  |  |  |  |
|                                                                          |                                                  |                                           |    |                    |  |  |  |  |
| GROUP – A                                                                |                                                  |                                           |    |                    |  |  |  |  |
| ( Multiple Choice Type Questions )                                       |                                                  |                                           |    |                    |  |  |  |  |
| 1. Choose the correct alternatives for any <i>ten</i> of the following : |                                                  |                                           |    |                    |  |  |  |  |
|                                                                          |                                                  |                                           |    | $10 \times 1 = 10$ |  |  |  |  |
| i)                                                                       | Decimal number + 52 and - 52 are                 |                                           |    |                    |  |  |  |  |
|                                                                          | a)                                               | 0110100 & 1110100                         | b) | 0101011 & 1101011  |  |  |  |  |
|                                                                          | c)                                               | 0110100 & 1101011                         | d) | none of these.     |  |  |  |  |
| ii)                                                                      | Addition of two hexadecimal numbers 58 and 24 is |                                           |    |                    |  |  |  |  |
|                                                                          | a)                                               | 7E                                        | b) | 7C                 |  |  |  |  |
|                                                                          | c)                                               | 6B                                        | d) | F1.                |  |  |  |  |
| iii)                                                                     | 2's c                                            | s complement of hexadecimal number 73A is |    |                    |  |  |  |  |
|                                                                          | a)                                               | 9C5                                       | b) | 8C6                |  |  |  |  |
|                                                                          | c)                                               | 8B7                                       | d) | 8F1.               |  |  |  |  |
| 4103 (O)                                                                 |                                                  |                                           |    | [ Turn over        |  |  |  |  |

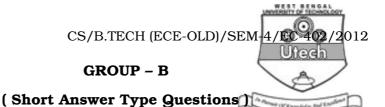
| CS/B.TEC | Н (ЕС                                                                                                              | CE-OLD)/SEM-4/EC-402 | 2/2012 | © <sub>0</sub>                    |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------|----------------------|--------|-----------------------------------|--|--|--|
| iv)      | Nori                                                                                                               | mally in HA circuit  | which  | gate is used for sum              |  |  |  |
|          | part                                                                                                               | ?                    |        | A famo (y Excelege 2nd Excellent) |  |  |  |
|          | a)                                                                                                                 | XOR                  | b)     | NAND                              |  |  |  |
|          | c)                                                                                                                 | OR                   | d)     | AND.                              |  |  |  |
| v)       | Which one is the invalid code in Excess-3 code?                                                                    |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | 0001 & 0000          | b)     | 0110 & 0100                       |  |  |  |
|          | c)                                                                                                                 | 1010 & 1100          | d)     | None of these.                    |  |  |  |
| vi)      | If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a high output? |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | 1                    | b)     | 2                                 |  |  |  |
|          | c)                                                                                                                 | 7                    | d)     | 8.                                |  |  |  |
| vii)     | Which one of the following is reflected code?                                                                      |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | 8421                 | b)     | Gray                              |  |  |  |
|          | c)                                                                                                                 | Excess-3             | d)     | ASCII.                            |  |  |  |
| viii)    | If (212) $_x$ = (23) $_{10}$ then what is the value of $x$ ?                                                       |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | 2                    | b)     | 3                                 |  |  |  |
|          | c)                                                                                                                 | 4                    | d)     | 5.                                |  |  |  |
| ix)      | Which of the following codes is used in <i>K</i> -map for representing the minterm?                                |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | BCD                  | b)     | Gray                              |  |  |  |
|          | c)                                                                                                                 | 8421                 | d)     | Excess-3.                         |  |  |  |
| x)       | The example of a Moore machine is                                                                                  |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | Sequence detector    | b)     | Binary counter                    |  |  |  |
|          | c)                                                                                                                 | BCD counter          | d)     | UP/DOWN counter.                  |  |  |  |
| xi)      | by a MOD-8 counter. The output frequency will be                                                                   |                      |        |                                   |  |  |  |
|          |                                                                                                                    |                      |        |                                   |  |  |  |
|          | a)                                                                                                                 | 10 kHz               | b)     | 2·5 kHz                           |  |  |  |
|          | c)                                                                                                                 | 5 kHz                | d)     | 25 kHz.                           |  |  |  |
| xii)     | A number of address lines in EPROM 4096 x 8 is                                                                     |                      |        |                                   |  |  |  |

4103 (O)

a)

c)

2


8

b)

d)

4

12.



Answer any three of the following.

 $3 \times 5 = 15$ 

- 2. Design a 2 bit comparator using logic gates.
- 3. Design a BCD adder circuit to add two BCD numbers maximum. The output of the adder should also be in BCD.
- 4. Minimize the following expressions using K map :  $F(A, B, C, D) = \pi M(0, 7, 8, 9, 10, 11, 15) + \phi(1, 4)$
- 5. Implement the function using only one 8: 1 max. Connect BCD with selection line.

$$F(A, B, C, D) = \sum m(0, 1, 2, 5, 9, 11, 13, 15)$$

6. What is 'race around problem'? How can it be overcome in JK flip-flop?

## **GROUP - C**

## (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Simplify the following functions by means of K-map :
  - i)  $F = \sum_{m} (0, 2, 6, 10, 11, 12, 13) + \sum_{d} (3, 5, 14).$
  - ii)  $F = \prod_{M} (0, 2, 6, 10, 11, 12, 13). \sum_{d} (6, 8, 10, 14).$
  - b) Design a common adder-subtractor and explain its function. 5 + 5 + 5
- 8. a) Write down the present state-next state table of JK & D flip-flops and derive the characteristic equation for these two flip-flops.
  - b) Draw logic diagram of the master-slave flip-flop. Why is it called so?
  - c) What are the differences between edge triggered and level triggered flip-flop. (3+3)+5+4

4103 (O) 3 [ Turn over

## CS/B.TECH (ECE-OLD)/SEM-4/EC-402/2012

- 9. a) Describe the operation of successive approximation type ADC. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type ADC?
  - b) Draw a neat diagram for an R-2R ladder type DAC and explain its operation. 7 + 8
- 10. a) Draw the circuit for a 4-bit Johnson counter using *D* flip-flop and explain its operation. Draw its timing diagram. How does its timing diagram differ from that of Ring counter?
  - b) Design a MOD-6 synchronous up-counter using JK flipflop. 8 + 7
- 11. Write short notes on any *three* of the following:

 $3 \times 5$ 

- a) EEPROM
- b) CMOS logic
- c) PLD
- d) Even parity generator & checker
- e) Comparator.

4103 (O)