Name :				••••	• • • • • • • • • • • • • • • • • • • •	•••
Roll No. :		••••••		• • • • • •		••••
Invigilato	r's Si	gnature :	• • • • • • • • • • • • • • • • • • • •	•••••		
CS/B.	TEC	H(EE)(EEE),(IC	CE)(N)/SE	:M-3	/EC(EE)-3	01/2012-13
			2012			
•	ANA	ALOG ELE	CTRON	IIC	CIRCU	ITS
Time Allotted : 3 Hours				Full Marks: 70		
	Th	e figures in the	margin in	dica	te full mark	cs.
Candide	ates o	are required to g	give their (far as pra			r own words
		G	ROUP -	A		
		(Multiple Ch	oice Type	e Qu	estions)	
1. Cho	ose t	he correct alte	rnatives f	or ai	ny ten of th	ne following: $10 \times 1 = 10$
i)	An i	should ha	we regulation			
	a)	maximum		b)	50%	
	c)	zero		d)	75 %.	
 ii) Thermal Runaway in a transistor is due to a) heating of the transistor b) changes in β which increases with temperature 						
						nperature
	c)	c) increase in reverse collector saturation current due to rise in temperature				
	d)	none of these	e.			
3257(N)						Turn over

- iii) In amplifier blocking capacitors are used
 - a) to increase the bandwidth
 - b) to match the impedance
 - c) to increase the gain
 - d) to avoid dc mixing with input or output.
- iv) The condition of oscillation is
 - a) $A\beta = 1$
 - b) feedback must be regenerative
 - c) phase angle must be zero or integral multiple of 360°
 - d) all of these.
- v) The expression of closed loop gain (A_f) for negative feedback amplifier is

a)
$$\frac{A}{1+A\beta}$$

b)
$$\frac{A}{1-A}$$

c)
$$\frac{1}{1+A\beta}$$

d)
$$\frac{1}{1-A\beta}$$
.

- vi) A Schmitt trigger uses
 - a) Negative feedback
 - b) Positive feedback
 - c) Pull up resistor
 - d) Compensating capacitor.
- vii) Differential amplifier can be used to amplify
 - a) only a.c. signal
 - b) only d.c. signal
 - c) both a.c. and d.c. signal
 - d) none of these.

3257(N)

viii) Most efficient power amplifier is

a) class A

b) class B

c) class C

d) class AB.

fx) The maximum theoretical efficiency of a push-pull class B power amplifier is

a) 50%

b) 78.5%

c) 60%

d) 25%.

x) Which one of the following feedback topologies offer high input impedance?

- a) Voltage series
- b) Voltage shunt
- c) Current series
- d) Current shunt.

xi) In the astable multivibrator the capacitor charges upto

a) $\frac{1}{3}$ V co

b) $\frac{2}{3} V_{cc}$

c) V_{cc}

d) none of these.

xii) In VCO, the frequency is dependent on the value of

- a) Resistance
- b) Capacitance

c) Voltage

d) None of these.

3257(N)

['] 3

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. a) Explain the need of biasing of a transistor.
 - b) Draw any one type of transistor biasing arrangement and determine its stability factor. 2+3
- Draw the h-parameter equivalent circuit of low frequency CE
 mode transistor amplifier and hence calculate the current
 gain in terms of h-parameters.
- 4. What is VCO? What are the basic differences between VCO and fixed frequency oscillator? 2 + 3
- 5. What is cross-over distortion? How does cross-over distortion arise in class B power amplifier? Suggest one method to avoid cross-over distortion. 1 + 3 + 1
- 6. Draw the electrical equaivalent circuit of a vibrating crystal and state the significance of each component. What are f_s and f_p ?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Describe the working principle of π -filter with diagram.
 - b) Draw the circuit of a shunt regulator and explain its operation.
 - c) What are the merits of switched mode power supply (SMPS) over regulated power supply? With the help of a neat circuit diagram briefly explain the operation of switched mode power supply.
 4 + 5 + (1 + 5)
- 8. a) Why voltage divider bias circuit is known as self bias circuit? A silicon transistor with $\beta=50$, $V_{BE}=0.6$ V, $V_{CC}=22.5$ V and $R_{C}=5.6$ K Ω is used for self biasing circuit. It is desired to establish a Q point at $V_{CE}=12$ V, $I_{C}=1.5$ mA and a stability factor $S\leq 3$. Find $R_{E}=R_{1}$ and R_{2}

(The symbols have their usual meanings).

b) Find the upper cut-off frequency of a two stage common-emitter RC coupled amplifier. A two stage common-emitter RC coupled amplifier uses transistor of the type BC 149 C of which the h-parameters and the internal capacitances are h_{fe} = 600, h_{ie} = 10 k Ω , C_{bc} = 2.5 pF, C_{be} = 9 pF. If the coupling capacitor is 0.5 μ F and the load resistance is 10 K Ω . Find the upper cut-off frequency and its gain. (2 + 5) + (4 + 4)

3257(N)

5

[Turn over

- 9. a) Give the circuit of colpitt's oscillator and explain its operation. Derive the condition for sustained oscillation and the expression for the frequency of oscillation of it.
 - b) What is the difference between Hartley and colpitt's oscillator.
 - c) An Hartle oscillator is designed with L1 = 20 μ H, L2 = 2mH and a variable capacitor. Determine the range of capacitance values if the frequency is varied between 950 2050 kHz. (5 + 5) + 2 + 3
- 10. a) What is power amplifier? How does it differ from a voltage amplifier?
 - b) Explain with circuit diagram the operation of a transformer coupled class A power amplifier and calculate its maximum power efficiency.
 - c) Two transistor operate in class B push pull circuit with a collector supply voltage V_{cc} = 15 volt. The turns ratio of the output transformer is 3:1 and the load resistance is 9 ohm. Determine maximum dc power supplied and the maximum output power. Also find out efficiency. 3 + 7 + 5
- 11. a) What are the criteria of a good instrumentation amplifier? Describe the steps for building an instrumentation amplifier starting from the basic differential amplifier.

- b) Draw the circuit diagram of an astable multivibrator using 555 timer and derive the expression of its frequency of oscillation.
- c) For an astable multi-vibrator using 555 timer, R_A = 6.8 K Ω , R_B = 3.3 K Ω and C = 0.1 μ F, calculate
 - i) t_{HIGH}
 - ii) t_{LOW}
 - iii) free running frequency
 - iv) duty cycle, D.

(2+5)+5+3

12. Write short notes on any three of the following:

 3×5

- a) PLL
- b) Phase-shift oscillator
- c) Tuned amplifier
- d) Current mirror circuit
- e) Trans-conductance multiplier.