Name :	
Roll No. :	An Annual With multiple and Uniform
Invigilator's Signature :	

2012

ENGINEERING MATERIAL SCIENCE

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1 = 10$

- Layered silicate sheet structures in clays consists of which of the following groups ?
 - a) ${\rm SiO_4^{4-}}$ b) ${\rm Si_2O_5^{2-}}$
 - c) ${\rm Si}_2 {\rm O}_7^{6-}$ d) ${\rm Si}{\rm O}_3^{2-}$.
- ii) Typical density of dislocation in a solid
 - a) $10^8 10^{10} \text{ m}^{-2}$ b) $10^8 10^{10} \text{ cm}^{-2}$
 - c) $10^8 10^{10} \text{ mm}^{-2}$ d) $10^8 10^{10} \mu \text{m}^{-2}$.

[Turn over

6428

iii) Plastic deformation results from which of the following ?

- a) slip b) twinning
- c) viscoelasticity d) both (a) and (b)
- e) all of these.
- iv) In a single-component condensed system, if the degree of freedom is zero, maximum number of phases that can coexist is
 - a) 0 b) 1
 - c) 2 d) 3
 - e) 4.
- v) Which of the following is not a Hume-Rothery condition ?
 - a) Elements should have the same valence
 - b) Elements should form compounds with each other
 - c) Size of atoms of each two elements must not differ by more than 15%
 - d) Crystal structure of each element of solid solution must be the same.
- vi) Fracture surface appear to be fibrous in case of
 - a) shear b) cleavage
 - c) transgranular d) intergranular.
- 6428

		CS/B.TECH(C	T)/S	EM-6/MSCT)-601/2012
vii)	If a surface crack causing fracture in a brittle material			
	is halved, the fracture strength will			
	a)	decrease by a factor $$	$\overline{2}$	
	b)	increase by a factor 2		
	c)	decrease by a factor 2		
	d)	increase by a factor $\sqrt{2}$	$\frac{1}{2}$.	
viii)	Pas	sivity is not reason fo	r ine	ertness of which of the
	following materials ?			
	a)	Au	b)	Al
	c)	Ti	d)	Ni.
ix)	Diff	icult to monitor and	l ve	ry dangerous form of
corrosion				
	a)	galvanic	b)	crevice
	c)	pitting	d)	intergranular.
x)	Wh	ich among the followi	ng n	netals can be used for
	cathodic protection ?			
	a)	Zn	b)	Ni
	c)	Al	d)	Cu.
GROUP – B				
(Short Answer Type Questions)				

Answer any *three* of the following. $3 \times 5 = 15$

State the factors responsible for the stress required to cause slip in a pure metal single crystal. Derive the relationship between a uniaxial stress acting on a cylinder of a pure metal single crystal and the resulting resolved shear stress on a slip system.

3

6428

[Turn over

5

- 3. Enumerate the differences between slip and twinning deformation mechanisms of metals with sketches.
- 4. Discuss strengthening mechanism of metals by grain size reduction.
- Narrate the fundamental postulates of Drude-Lorentz theory of metals. What are the conspiquous successes and failures of free electron theory ?
 2 + 3
- What is Pilling-Bedworth ratio ? Discuss catastrophic oxidation of metals and alloys. Which action can retard this behaviour in iron alloys ?
 1 + 3 + 1

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) With the help of a time-independent form of Schrödinger's wave equation prove that the energy of an electron in a metal is quantised.
 - b) An electron in a cubical box of metal is subjected to the influence of a magnetic field such that its length *l* increases by d*l*, while its breadth *b* and thickness d remain unchanged. Show that the energy difference

between the states (311) and (111) is $\frac{h^2}{8ml^2}\left(\frac{16 \, dl}{1}\right)$.

8. a) What is slip deformation ? Which ideas provide you the basis for the observation that slip occurs most readily in closed packed planes and closed packed directions only ? Which among FCC, BCC and HCP metals is most plastic and why ?

b) Prove that maximum shear stress at which slip occurs is $\frac{G}{2\pi}$, where G is the shear modulous. 6

6428

- c) What important role does twinning play in the plastic deformation of metals with regard to deformation by slip ? Why is deformation twinning especially important for HCP metals ? In which condition twins are formed in FCC and BCC metals ? 1 + 1 + 2
- 9. a) Discuss the mechanism of solid solution hardening. Draw the nominal stress-strain curve for a solid solution hardened metal. How would it be different from that of mild steel or copper ?
 - Explain the mechanism of work hardening of metals.
 Point out a major disadvantage of work hardening as a method of increasing strength of a metal or alloy.

4 + 1

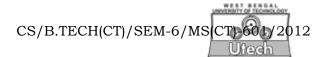
- c) When a cold worked metal is heated into temperature range where recovery, recrystallization & grain growth take place, show schematically how are (i) internal residual stress, (ii) strength, (iii) hardness and (iv) ductility affected.
- 10. a) Prove that the theoretical cohesive strength of metals ranges between E/6 to E/10, where E is the Young's modulus.
 - b) Deduce and discuss quantitatively as to how failure
 becomes evident as a crack propagates in a material
 with reference to stress concentration at the crack tip.

4

c) Fused silicon has a surface energy of 4.23 J/m² and an elastic modulus of 69,000 MPa. A large plate of this material is to withstand a normal internal stress of 35 MPa. What is the largest flow in mm that can be tolerated without fracture occurring ?

6428

[Turn over


4

- 11. a) Define corrosion as it pertains to materials. State the factors that affect corrosion of metals.
 - b) What is 'area effect' in respect of galvanic corrosion of metals ? Which of the following conditions is more favourable from a corrosion prevention standpoint
 - i) large Cu plate, steel rivets
 - ii) large steel plate, copper rivets ?
 - c) Consider a copper-zinc corrosion couple. If the current density at the Cu cathode is 0.05 A/cm², calculate the weight loss of Zn per hour if,
 - i) the Cu area is 100 cm^2 , Zn area is 1 cm^2
 - ii) the Cu area is 1 cm^2 , Zn area is 100 cm^2 .

Comment on the rate of corrosion in so far as anode area is concerned. (Mol. wt. of Zn = 65.35 gm/mol) 4

- d) On half of an electrochemical cell consists of a pure Ni electrode in a solution Ni²⁺ ions; the other half is Cd electrode immersed in a Cd²⁺ solution.
 - i) If the cell is standard one, write the spontaneous overall reaction and calculate the voltage that is generated given that half cell potentials for Cd and Ni are respectively 0.403 V and 0.250 V.
 - ii) Compute the cell potential at 25°C when the Cd²⁺ and Ni²⁺ concentrations are 0.5 M and 10^{-3} M respectively.

Is the spontaneous reaction direction still the same as for the standard cell and why ? 5

12. a) What are the important factors of consideration if a metal is to form a protective oxide ?

- b) Discuss the anion-cation diffusion mechanism of oxide formation on metals with relevant sketches.
 4
- c) Using equations, describe the linear, parabolic & logarithmic oxidation of metals behaviour with examples.
- d) A 1 cm² sample of 99·94 wt% nickel, 0·75 mm thick is oxidised in oxygen at 1 atm pressure at 600°C. After 2 hours, the sample showed a weight gain of 70 μg/cm². If this material shows parabolic oxidation behaviour, what will the weight gain be after 10 hours ?

3

6428

[Turn over