#  <br> viesh <br> Name : <br> Roll No. <br> $\qquad$ <br> Invigilator's Signature : <br> CS/B.Tech (CSE)/SEM-8/CS-801C/2011 2011 <br> DIGITAL SIGNAL PROCESSING 

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

## GROUP - A

( Multiple Choice Type Guestions )

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The digital system in $y(n)=x\left(n^{2}\right)$ is
a) linear and causal
b) linear and non-causal
c) non-linear and causal
d) non-linear and non-causal.
ii) The energy of constant amplitude complex valued exponential function $x(n)=A \exp (j n \omega)$ where $A$ and $\omega$ constants is given by
a) $\quad A^{2}$
b) $\frac{A^{2}}{2 \omega}$
c) $\frac{A^{2}}{2}$
d) $\frac{A^{2}}{\omega}$.

CS/B.Tech (CSE)/SEM-8/CS-801C/2011
iii) Infinite memory system is also known as
a) FIR system
b) IIR system
c) Digital system
d) Analog system.
iv) The $z$-transform of $u(-n)$ is
a) $\frac{1}{\left(1-z^{-1}\right)}$
b) $\frac{z}{(1-z)}$
c) $\frac{1}{(1-z)}$
d) $\frac{1}{(z-1)}$.
v) If $x_{1}(n)$ and $x_{2}(n)$ are finite length sequences of sizes $L$ and $M$ respectively, their linear convolution has the length
a) $L+M-2$
b) $L+M-1$
c) $\quad L+M$
d) $\max \{L, M\}$.
a) if present output depends on pervious output only
b) if system function $H(z)$ has one or more non-zero denominator coefficients
c) if all the poles lie outside the unit circle
d) if system function has only zeros.
vii) The Fourier transform of $\delta(n)$ is
a) 1
b) 0
c) $\pi \delta(\omega)$
d) $\delta(\omega)$.
viii) If $x(k)$ is $z$-transform of $x(n)$, then $z$ transform of $x(n-k)$ is
a) $z^{k} x(k)$
b) $\quad z^{-k} x(k)$
c) $z^{\frac{1}{k}} x(k)$
d) $\quad z^{-\frac{1}{k}} x(k)$.
ix) A causal system always has
a) right side sequences
b) left side sequences
c) both side sequences
d) none of these.

CS/B.Tech (CSE)/SEM-8/CS-801C/2011
x) Zero padding a signal
a) reduces aliasing

b) increase time resolution
c) increase frequency resolution
d) has no effect.
xi) Fir filter is
a) recursive and linear
b) non-recursive and linear
c) recursive and non-linear
d) none of these.
xii) The mapping from analog to digital domain in impulse invariant method is
a) one to many
b) many to one
c) one to one
d) none of these.

2. Determine the $z$-transform of the following DT signal and find its ROC.

$$
x(n)=(n+0 \cdot 5)\left(\frac{1}{3}\right)^{n} u(n) .
$$

3. When a system is said to be stable ? Find whether the system with impulse response $h(n)=2 e^{-2|n|}$ is stable or not.
4. Determine the Fourier transform of the signal :

$$
x(n)=2^{n} u(-n)-2^{-n} u(n)
$$

5. Find out the DFT of $x(n)=\{0,2,4,6\}$.
6. Determine the response of the LTI system to the input signal $x(n)=2^{n} u(n)$, whose impulse response is $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$.

CS / B.Tech (CSE)/SEM-8/CS-801C/2011

7. a) Using Bilinear transformation, design a high-pass filter monotonic in pass band with a cut-off frequency of 1 kHz and down by 10 dB at 350 Hz while sampling frequency is 5 kHz .
b) Determine the $z$-transform of the following signal and indicate their ROC along with pole zero plots.
i) $\quad x(n)=\left(a^{n} \cos \omega_{0} n\right) u(n)$
ii) $\quad x(n)=a^{n} u(n)+b^{n} u(-n-1),|a|<|b| . \quad 4+4$
8. a) Discuss about design method of low-pass filter.
b) What is rectangular window?
c) How is a rectangular window used to design FIR filter ?
d) Determine the IDFT of $x(k)=\{3,(2+j), 2,(2-j)\}$.

$$
4+2+4+5
$$

9. a) Compute the DFT of a sequence $(-1)^{n}$ for $N=3$.4
b) Explain the decimation in time FFT algorithm.
c) Find the order of the Butterworth filter that has a - 2dB pass band attenuation at a frequency of $20 \mathrm{rad} / \mathrm{sec}$ and -10 dB stop band attenuation at $30 \mathrm{rad} / \mathrm{sec}$.
10. a) Design an ideal band pass filter with a faequency response
$H_{d}\left(e^{j \omega}\right)=1$ for $\frac{\pi}{4} \leq \omega \leq \frac{3 \pi}{4}$
$=0$ otherwise.

Find the values of $h(n)$ for $N=11$ and plot the frequency response.
b) Distinguish between FIR and IIR filter.
$10+5$
11. Write short notes on any three of the following :
a) Circular convolution
b) Utility of FFT over DFT
c) BIBO stability in $Z$ Domain
d) Gibb's Phenomenon
e) Periodic and aperiodic signal.

