Nama	Utech
Name :	
Roll No.:	
Invigilator's Signature:	

DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The digital system in $y(n) = x(n^2)$ is
 - a) linear and causal
 - b) linear and non-causal
 - c) non-linear and causal
 - d) non-linear and non-causal.
- ii) The energy of constant amplitude complex valued exponential function x (n) = A exp ($jn\omega$) where A and ω constants is given by
 - a) A^2

b) $\frac{A^2}{2\omega}$

c) $\frac{A^2}{2}$

d) $\frac{A^2}{\omega}$.

8204 [Turn over

- iii) Infinite memory system is also known as
 - a) FIR system
- b) IIR system
- c) Digital system
- d) Analog system.
- iv) The z-transform of u (n) is

a)
$$\frac{1}{\left(1-z^{-1}\right)}$$

b)
$$\frac{z}{(1-z)}$$

c)
$$\frac{1}{(1-z)}$$

d)
$$\frac{1}{(z-1)}$$
.

v) If $x_1(n)$ and $x_2(n)$ are finite length sequences of sizes L and M respectively, their linear convolution has the length

a)
$$L + M - 2$$

b)
$$L + M - 1$$

c)
$$L + M$$

d) $\max\{L, M\}$.

- vi) A digital filter is said to be IIR
 - a) if present output depends on pervious output only
 - b) if system function H (z) has one or more non-zero denominator coefficients
 - c) if all the poles lie outside the unit circle
 - d) if system function has only zeros.
- vii) The Fourier transform of δ (n) is
 - a) 1

- b) 0
- c) πδ(ω)
- d) δ (ω).
- viii) If x (k) is z-transform of x (n), then z transform of x (n-k) is
 - a) $z^k x(k)$

b) $z^{-k}x(k)$

c) $z^{\frac{1}{k}}x(k)$

- d) $z^{-\frac{1}{k}}x(k)$
- ix) A causal system always has
 - a) right side sequences
 - b) left side sequences
 - c) both side sequences
 - d) none of these.

- x) Zero padding a signal
 - a) reduces aliasing
 - b) increase time resolution
 - c) increase frequency resolution
 - d) has no effect.
- xi) Fir filter is
 - a) recursive and linear
 - b) non-recursive and linear
 - c) recursive and non-linear
 - d) none of these.
- xii) The mapping from analog to digital domain in impulse invariant method is
 - a) one to many
 - b) many to one
 - c) one to one
 - d) none of these.

8204 4

2. Determine the z-transform of the following DT signal and find its ROC.

$$x(n) = (n + 0.5) \left(\frac{1}{3}\right)^n u(n).$$

- 3. When a system is said to be stable ? Find whether the system with impulse response $h(n) = 2e^{-2|n|}$ is stable or not.
- 4. Determine the Fourier transform of the signal :

$$x(n) = 2^n u(-n) - 2^{-n} u(n)$$

- 5. Find out the DFT of x (n) = {0, 2, 4, 6}.
- 6. Determine the response of the LTI system to the input signal $x(n) = 2^n u(n)$, whose impulse response is $h(n) = \left(\frac{1}{2}\right)^n u(n)$.

Ulech

(Long Answer Type Questions)

Answer any three of the following.

- 7. a) Using Bilinear transformation, design a high-pass filter monotonic in pass band with a cut-off frequency of 1 kHz and down by 10 dB at 350 Hz while sampling frequency is 5 kHz.
 - b) Determine the z-transform of the following signal and indicate their ROC along with pole zero plots.
 - i) $x(n) = (a^n \cos \omega_0 n) u(n)$

ii)
$$x(n) = a^n u(n) + b^n u(-n-1), |a| < |b|.$$
 4 + 4

- 8. a) Discuss about design method of low-pass filter.
 - b) What is rectangular window?
 - c) How is a rectangular window used to design FIR filter?
 - d) Determine the IDFT of $x(k) = \{3, (2+j), 2, (2-j)\}.$

4 + 2 + 4 + 5

- 9. a) Compute the DFT of a sequence $(-1)^n$ for N = 3.
 - b) Explain the decimation in time FFT algorithm. 7
 - c) Find the order of the Butterworth filter that has a
 2dB pass band attenuation at a frequency of
 20 rad/sec and 10 dB stop band attenuation at
 30 rad/sec.

8204 6

10. a) Design an ideal band pass filter with a frequency response

$$H_d(e^{j\omega}) = 1 \text{ for } \frac{\pi}{4} \le \omega \le \frac{3\pi}{4}$$

= 0 otherwise.

Find the values of h (n) for N=11 and plot the frequency response.

- b) Distinguish between FIR and IIR filter. 10 + 5
- 11. Write short notes on any *three* of the following: 3×5
 - a) Circular convolution
 - b) Utility of FFT over DFT
 - c) BIBO stability in Z Domain
 - d) Gibb's Phenomenon
 - e) Periodic and aperiodic signal.