Name:	• • • • • •	••••••		••••				
Roll No. :		•••••						
Invigilator	's Sig	jitaliare i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii						
				1-7/CS-702/2010-11				
•		2010-1						
		ARTIFICIAL INTE	LLI	•				
Time Allot	ted :	3 Hours		Full Marks: 70				
	The	e figures in the margin ir	ıdicai	te full marks.				
Candida		are required to give their as far as pro	ansu	ers in their own words				
		GROUP -	A					
	. (Multiple Choice Typ	pe Q	uestions)				
1. Cho	ose t	he correct alternatives f	or the	e following: $10 \times 1 = 10$				
i)	An algorithm that gives optimal solution is							
	a)	Hill Climbing	b)	BFS				
	c)	Blind search	d)	A*.				
ii)	A fo	ormula with no free vari	ables	is				
	a)	formula	b)	clause				
	c)	a sentence	d)	paragraph.				
iii)	In l	First Order logic, resolu	tion	condenses the				
	of logical inference down to a single rule.							
	a)	Traditional syllogism	b)	Logical sequence				
	c)	Logical reference	d)	None of these.				
7201			*1	[Turn over				

1V)	Un	informed	search is	also	known	20
-----	----	----------	-----------	------	-------	----

- a) Brute force search
- b) Hill climbing search
- c) Worst case search
- d) Blind search.
- v) Horn clause is a clause with positive literals.
 - a) At most one
- b) At most two
- c) At least one
- d) At most four.
- vi) Which of the following is a declarative knowledge?
 - a) A set of production rules
 - b) Using LISP code to define a value
 - c) Describing the objects using a set of attributes and associated values
 - d) A knowledge about the order in which to pursue the subgoals.
- vii) Which of the following is not true about backward chaining?
 - a) Backward chaining is a goal directed reasoning process
 - b) Backward chaining would be much better to use when trying to prove theorems
 - c) For arriving at a new fact, backward chaining is more natural
 - d) A medical diagnostic program is a query system that would probably use.

viii)	"John	is	tall".	This	statement	can	be	completely
							•	
	expres	sed	in	¥				

- a) FOPL
- b) Propositional logic
- c) Fuzzy logic
- d) Default logic.
- ix) Which is not heuristic search?
 - a) Constrained satisfaction search
 - b) Depth first search
 - c) Simulated annealing
 - d) Steepest ascent Hill climbing.
- x) Resolution can be used for
 - a) question answering b) theorem proving
 - c) both (a) and (b) d) none of these.

7201

3

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A problem-solving search can proceed in either the forward or the backward direction. What factors determine the choice of direction for a particular problem?
- 3. With suitable example explain the characteristics of monotonic and partially commutative production system.
- 4. Give one example of a problem in which solutions requiring minimum search are more appropriate than optimal solutions. Give reasons for your choices.
- 5. Discuss the benefits of production system.
- 6. Write a program in prolog to compute the factorial of a number using iteration/tail recursion.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$ Prove each of the following statements: 7. Breadth first search is a special case of uniform cost a) search. 5 b) Breadth first, depth first and uniform cost search are special cases of Best First Search. 5 c) Uniform cost search is a special case of A* search. 5 8. Represent the following sentences by default logic. Also a) mention the sets D and W. i) Typically molluscs are shell-bearers Cephalopods are molluscs ii) iii) Cephalopods are not shell-bearers. 6 b) Draw a decision tree corresponding to the following expression: If (Weather = Hot \wedge Humidity = High) \vee (Weather = Cool \wedge Humidity = Moderate) \vee (Weather = Rainy \wedge Wind = Strong).

7201

5

Then start reading a story book.

[Turn over

- 9. a) Using the Euclidean distance of a node (x, y) from a fixed node (2, 2), i.e., $h = \left[(x-2)^2 + (y-2)^2 \right]^{\frac{1}{2}}$ solve the water-jug problem by A* algorithm. Does this heuristic function return an optimal path? Consequently, can you call it an admissible heuristic?
 - b) Show the computation for the first 3 ply moves in a tictac-toe game using the α - β cut-off algorithm. 7
- 10. Test whether the following production systems are commutative. Justify your answer.
 - a) Knowledge base:

If A & B then C

If C then D

If A & D then E.

Initial Working Memory = $\{A, B\}$

Knowledge base:

If A & B then C

If X & Y then C

If A then E

If B then F.

Initial WM = $\{A, B, X, Y\}$.

8

Block's world problem. Construct a set of operators (rules) and hence generate a plan to reach the goal state from the initial state.

Initial State: On (C, A)

Clear (C),

On (B, Table),

Clear (B).

Goal State: On (B, A)

On (C, B).