Nam	Name :							
Roll	Roll No. :							
Invig	jilatoi	's Sig	nature :					
	DE	STOR	2012		EM-5/CS-503/2012-13			
DESIGN AND ANALYSIS OF ALGORITHMS								
rıme	Time Allotted: 3 Hours Full Marks: 70							
	The figures in the margin indicate full marks.							
Cai	Candidates are required to give their answers in their own words as far as practicable							
	GROUP – A							
			(Multiple Choice Typ	e Qu	estions)			
1.	Cho	ose th	ne correct alternatives fo	or the	e following: $10 \times 1 = 10$			
	i)	Time complexity for recurrence relation $T(n) = 2T(\sqrt{n}) + is$						
		a)	Θ (log n)	b)	Θ (n^2)			
		c)	Θ ($n \circ g n$)	d)	Θ (n).			
	ii) Time comp exity for the Floyd's algorithm to find all pairs of shortest path of a graph G with V vertices and V edges using dynamic programming method is							
		a)	$O(V^2)$	b)	$O(E^2)$			
		c)	$O(V^3)$	d)	$O(E^3)$.			
	iii)	Ω-n	otation provides an asy	mpto	tic			
		a)	upper Bound					
		b)	lower Bound					
		c)	one that is sandwiched	l betv	veen the two bounds			
		d)	none of these.					
540	l(O)				[Turn over			

CS/B.Tech/CSE(O)/SEM-5/CS-503/2012-13	CS/B.Tech	CSE(O)	/SEM-5/	CS-503	/2012	-13
---------------------------------------	-----------	--------	---------	--------	-------	-----

iv)	The Big <i>O</i> notation $f(n) = n \log n + n^2 + e^{\log n}$ is		of	the	expressi	on		
	a)	<i>O</i> (<i>n</i>)			O(n²	²)		
	c)	O (n log	n)		$O(e^{l}$			
v)	Trav	avelling salesman problem belongs to						
	a)	P class		b)	NP c	lass		
	c)	NP-hard		d)	NP-o	compl	lete class	
vi)	Tigh	ght bound for building a max heap algorithm wil				ithm will be		
	a)	$O(\log n)$		b)	$O(n^2)$	²)		
	c)	O(n log n)	d)	O(n)			
vii)	hich mak	ces a g	graph	disconnect	ed			
	a)	Pendant	vertex	b)	Brid	ge		
	c)	Articulati	on point	d)	Colo	ured	vertex.	
viii)	The diagonal of th adjacency matrix of a graph with a self loop contains							
	a)	1		b)	0			
	c)	- 1		d)	both	ı (a) a	and (b).	
ix)	Lower b und of time complexity for any comparison based sorting algorithm is							
	a)	<i>O</i> (<i>n</i>)		b)	O(n	log n)	
	c)	$O(\log n)$		d)	$O(n^2)$	²).		
x) Time complexity of non-determinal always				ermini	stic	algorithm	is	
	a) less than deterministic algorithm							
	b)	greater than deterministic algorithm						
	c)	equal to deterministic algorithm						
	d)	none of these.						
5401(O)				2				

CS/B.Tech/CSE(O)/SEM-5/CS-503/2012-13

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. What is heap property? Write an algorithm for deletion of the maximum element from a heap.
- 3. Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n-a) + T(a) + cn where $a \ge 1$ and c > 0 are constants.
- 4. Find out the worst case time complexity of merge sort.
- 5. Derive the time complexity of Tower of Hanoi problem.
- 6. Write an algorithm to compute x^n with $O(\log n)$ complexity.

GROUP - C

(Long Answer Type Questions)

Answer any *thr e* of the following. $3 \times 15 = 45$

7. a) Find the minimum number of operations required for the following matrix chain multiplication using dynamic programming:

$$A (10 \times 20) * B (20 \times 50) * C (50 \times 1) * D (1 \times 100)$$

- b) Write an algorithm of eight queen problem.
- c) What is tail recursion? Give an example. 5 + 5 + 5

5401(O) 3 [Turn over

CS/B.Tech/CSE(O)/SEM-5/CS-503/2012-13

8. a) Find the optimal solution using greedy criteria for a knapsack having capacity 100 kg for the following list of items having values and weights as shown in table.

Item	Value	Weight
I_1	10	15
I_2	20	25
I_3	30	35
I_4	40	45
I_5	50	55

- b) What do you mean by Dynamic Programming? What is the difference between dynamic programming and greedy method? 10 + 2 + 3
- 9. **Discuss** the procedure for Stassen's matrix a) multiplication to evaluate the product of n matrices. Find the resulting re urrence relation for the same and analyze its time complexity. Is this method an improvement ver the conventional matrix multiplication method?
 - b) What is union-find algorithm? 7 + 2 + 2 + 4
- 10. a) Design a backtracking algorithm to find all the Hamiltonian cycles in a Hamiltonian graph.
 - b) Discuss activity selection problem for job sequencing.
 - c) Write the travelling salesman problem with an algorithm. 5+5+5

5401(O)