Name: \qquad
Roll No. : \qquad
\qquad

CS/B.Tech/CSE(O)/SEM-5/CS-503/2012-13 2012
 DESIGN AND ANALYSIS OF ALGORITHMS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) Time complexity for recurrence relation $T(n)=2 T(\sqrt{n})+1$ is
a) $\quad \Theta(\log n)$
b) $\quad \Theta\left(n^{2}\right)$
c) $\quad \Theta(n$ og $n)$
d) $\quad \Theta(n)$.
ii) Time comp exity for the Floyd's algorithm to find all pairs of shortest path of a graph G with V vertices and E edges using dynamic programming method is
a) $O\left(V^{2}\right)$
b) $O\left(E^{2}\right)$
c) $O\left(V^{3}\right)$
d) $\quad O\left(E^{3}\right)$.
iii) Ω-notation provides an asymptotic
a) upper Bound
b) lower Bound
c) one that is sandwiched between the two bounds
d) none of these.

CS/B.Tech/CSE(O)/SEM-5/CS-503/2012-13
iv) The Big O notation of the expression $f(n)=n \log n+n^{2}+e^{\log n}$ is
a) $\quad O(n)$
b) $O\left(n^{2}\right)$
c) $\quad O(n \log n)$
d) $O\left(e^{\log n}\right)$.
v) Travelling salesman problem belongs to
a) P class
b) NP class
c) NP-hard
d) NP-complete class
vi) Tight bound for building a max heap algorithm will be
a) $O(\log n)$
b) $O\left(n^{2}\right)$
c) $\quad O(n \log n)$
d) $\quad O(n)$.
vii) The node removal of which makes a graph disconnected is called
a) Pendant vertex
b) Bridge
c) Articulation point
d) Coloured vertex.
viii) The diagonal of th adjacency matrix of a graph with a self loop contains
a) 1
b) 0
c) -1
d) both (a) and (b).
ix) Lower b und of time complexity for any comparison based sorting algorithm is
a) $\quad O(n)$
b) $\quad O(n \log n)$
c) $\quad O(\log n)$
d) $O\left(n^{2}\right)$.
x) Time complexity of non-deterministic algorithm is always
a) less than deterministic algorithm
b) greater than deterministic algorithm
c) equal to deterministic algorithm
d) none of these.

```
                GROUP - B
(Short Answer Type Questions )
Answer any three of the following. \(3 \times 5=15\)
```

2. What is heap property ? Write an algorithm for deletion of the maximum element from a heap.
3. Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n)=T(n-a)+T(a)+c n$ where $a \geq 1$ and $c>0$ are constants.
4. Find out the worst case time complexity of merge sort.
5. Derive the time complexity of Tower of Hanoi problem.
6. Write an algorithm to compute x^{n} with $O(\log n)$ complexity.

$$
\begin{aligned}
& \text { GROUP - C } \\
& \text { (Long Answer Type Questions) } \\
& \text { Answer any thr } e \text { of the following. }
\end{aligned} \quad 3 \times 15=45
$$

7. a) Find the minimum number of operations required for the following matrix chain multiplication using dynamic programming :

$$
A(10 \times 20) * B(20 \times 50) * C(50 \times 1) * D(1 \times 100)
$$

b) Write an algorithm of eight queen problem.
c) What is tail recursion ? Give an example. $5+5+5$
[Turn over

CS/B.Tech/CSE(O)/SEM-5/CS-503/2012-13
8. a) Find the optimal solution using greedy criteria for a knapsack having capacity 100 kg for the following list of items having values and weights as shown in table.

Item	Value	Weight
I_{1}	10	15
I_{2}	20	25
I_{3}	30	35
I_{4}	40	45
I_{5}	50	55

b) What do you mean by Dynamic Programming? What is the difference between dynamic programming and greedy method?
$10+2+3$
9. a) Discuss the procedure for Stassen's matrix multiplication to evaluate the product of n matrices. Find the resulting re urrence relation for the same and analyze its time complexity. Is this method an improvement ver the conventional matrix multiplication method?
b) What is union-find algorithm?

$$
7+2+2+4
$$

10. a) Design a backtracking algorithm to find all the Hamiltonian cycles in a Hamiltonian graph.
b) Discuss activity selection problem for job sequencing.
c) Write the travelling salesman problem with an algorithm. $5+5+5$
