

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 **NUMERICAL METHODS & PROGRAMMING**

SEMESTER - 3

Time: 3 Hours]

[Full Marks: 70

GROUP - A

	, · · · · · ·		(Multiple Choi	ce Type Questions)	
1.	Cho	ose th	e correct alternatives for any	y ten of the following :	10 × 1 = 10
	i)	In N	lewton's forward interpolation	n, the intervals should be	
		a)	equally spaced		
	•	b)	not equally spaced		
		c)	may be equally spaced		
		d)	both (a) and (b).		
	ii)	Whi	ch of the following is not tru	e (the notations have their us	ual meanings) ?
		a)	$\Delta = E - 1$	b) $\Delta \cdot \nabla = \Delta - \nabla$	
		c)	$\frac{\Delta}{\nabla} = \Delta + \nabla$	$\nabla = 1 - E^{-1}.$	
	iii)	The	$(n+1)^{th}$ order forward dif	ference of the n^{th} degree poly	nomial is
		a)	n!	b) $(n+1)!$	•
-		c)	0	d) none of these.	
	iv)	The	inherent error for Weddle's	rule of integration is as (the r	notations have their
		usu	al meanings)		
		a)	$-\frac{nh^5}{180}f^w(x_0)$	b) $-\frac{nh^7}{180} f^{vi} (x_0)$	
		c)	$-\frac{nh^7}{140}f^{vi}(x_0)$	d) none of these.	

v) Output of the following programme code

main()
 {
 int x, y;
 y = 4;
 x = y << 4;
 printf("%d", x);
}</pre>

is

a) 63

b) 60

c) 64

d) 65.

vi) Rounding off the number 0.0063945 correct up to 4 significant figures is

a) 0.0064

b) 0.0063

c) 0.006395

d) 0.006394.

vii) Condition for convergence of Newton-Raphson method is

a)
$$|f(x).f'(x)| < {f''(x)}^2$$

b)
$$|f(x).f''(x)| < {f'(x)}^2$$

c)
$$|f(x).f'(x)| > \{f''(x)\}^2$$

d)
$$|f(x).f''(x)| > \{f'(x)\}^2$$
.

viii) In evaluating $\int f(x) dx$, the error in Trapezoidal rule is of order

a) h^2

b) h^{3}

c) h^4

d) h

where h is the width of each sub-interval of [a, b].

CS/B.TECH (EE-NEW)/SEM-3/CS-312/08/(09)	5

ix)	Sim	pson's one-third rule is applical	ble only	y if the number of subintervals i	s even.
	a) ု	True	b)	False.	
x)	Lagr	range's interpolation formula de	als witl	n .	
	a)	Equispaced arguments only	þ	Unequispaced arguments only	•
	c)	both (a) and (b)	d)	none of these.	
xi)	Δ3	(Y_0) may be expressed as whi	ich of t	he following terms ?	
	a)	$(Y_3 - 3Y_2 + 3Y_1 - Y_0)$	b)	$(Y_2 - 2Y_1 + Y_0)$	
	c)	$(Y_3 - 3Y_2 + 3Y_1 + Y_0)$	d)	Both (a) and (c).	
xii)	Out	put of the following Program Co	de :		
		Void main()			
		(
		int $i = 0$;		•	
		clrscr();			
		void main();	•		
		printf("number : %d", i);			
		i ++ ;			
		getch();			
		·			
	is		,		
	a)	number : 0			
	b)	number : 1			
	c)	continue printing like (b) j.e.	0.		
	C)	number : upto number : <		number >	
	d)	none of these.	B		

ce	D TECH	(PP NEW)	CEN 9	CC 210	100 1100
CO	B. I ECH	(EE-NEW)	SEMI-O	C3-312	(60)(00)

6

xiii) Relative Error is measured by which of the following expressions?

- a) $\operatorname{Mod}\left[\frac{Absolute\ Error}{Approximate\ Error}\right]$
- b) $\operatorname{Mod}\left[\frac{Absolute\ Error}{Exact\ Error}\right]$
- c) Mod (Exact value Approximate value)
- d) None of these.
- xiv) In Gauss elimination method, the given system of equations represented by AX = B is converted to another system UX = Y where U is
 - a) diagonal matrix

b) null matrix

c) identify matrix

- d) uppeer triangular matrix.

- xv) The minimum number of functions in any C program is
 - a) 1

b) 2

c) 3

d) 4

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

. a) Prove that

$$f(4) = f(3) + \Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1).$$

3

b) Evaluate $\Delta^2 \cos 2x$.

2

- a) What is the difference between interpolation and extrapolation? Give suitable examples.
 - b) Find the polynomial f(x) and hence calculate f(5.5) for the given data: 3

x:	0	2	3	5	7
f(x):	1	47	97	251	477

7

- 4. a) What do you mean by geometrical interpretation of Simpson's $\frac{1}{3}$ rd rule?
 - b) Calculate the area of the function $f(x) = \sin x$ with limits $(0 90^\circ)$ by Simpson's $\frac{1}{3}$ rd rule using 11 ordinates.
- 5. Compute the values of f(3.5) and f(7.5) using Newton's interpolation from the following table:

[x:	3	4	5	6	7	8
1	f(x):	27	64	125	216	343	512

- 6. Show that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$, where Δ is the forward difference operator.
- 7. Solve by using Euler's Method the following Differential equation for x = 1 by taking h = 0.2.

$$\frac{dy}{dx} = xy, y = 1$$
 when $x = 0$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3\times15=45$

8. a) Given the following table of function $F(x) = \frac{1}{x}$, find $\frac{1}{2.72}$ using the suitable

Interpolation Formulae. Find an estimate of the error.

X: yan	2.7	2.8	2.9
F(x):	0.3704	0.3571	0.3448

b) Solve the system of linear equations by Gauss-Elimination method:

$$x - 2y + 9z = 8$$

$$3x + y - z = 3$$

$$2x - 8y + z = -5.$$

7

9. a) Find Lagrange's interpolation polynomial passing through the set of points :

x	0	1	2
y	4	3	6

Use it to find y at
$$x = 1.5$$
, $\frac{dy}{dx}$ at $x = 0.5$ and evaluate $\int_{0}^{3} y \, dx$.

b) Find the value of log 2 ^{1/3} from $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx$ using Simpson's $\frac{1}{3}$ rd rule with

$$h = 0.25$$
.

10. a) Find the real root of
$$x^3 + x^2 - 1 = 0$$
 by Iteration method.

b) Solve the equation by L-U factorization method:

$$2x + y + z = 3$$

 $x + 3y + z = -2$
 $x + y + 4z = -6$.

c) Peduce the Newton's Backward Interpolation Formula. 5

11. a) What do you mean by recursion and calling a function

i) by reference

ii) by value?

Explain with examples.

- iii) What is the difference between do loop and do-while loop in C ? Give examples.
- b) Write a program in C for Trapezoidal Rule, taking any function of your choice. 7
- 12. a) Solve the following differential equations for x = 1 by taking h = 0.2 using Taylor's series method:

$$\frac{dy}{dx} = x^3 + y^4$$
, y(0) = 1; correct to the three decimal places.

b) Find
$$A^{-1}$$
, if $A = \begin{bmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{bmatrix}$ by Gauss-Jordan method. 7

13. a) Find out the root of the following equation using Regula Falsi method:

9

 $3x - \cos(x) - 1 = 0$ that lies between 0 and 1 (correct to four decimal places).

b) Solve the system of equations by Gauss-Seidel method:

$$3x + 4y + 15z = 54.8$$

$$x + 12y + z = 39.66$$

$$10 x + y - 2z = 7.74.$$

8

END