

CS/B. TECH (CSE/IT)/SEM-3/EC-312/2010-11

2010-11

DIGITAL ELECTRONICS AND LOGIC DESIGN

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The race-around condition does not occur in Flip-Flop
a) $\mathrm{J}-\mathrm{K}$
b) Master slave
c) T
d) None of these.
ii) A message bit is 010101. We are using even parity generator, so that the parity bit added to the message bit is
a) 0
b) 1
c) $0 \& 1$
d) None of these.

CS/B. TECH (CSE/IT)/SEM-3/EC-312/2010-11
iii) If, $(128)_{10}=(1003)_{b}$, the possible base b is

a) 3
b) 4
c) 5
d) 6 .
iv) Which of the following codes is not a BCD code ?
a) Gray
b) $\mathrm{Xs}-3$
c) 8421
d) All of these.
v) $\quad(11011)_{2}$ in $\operatorname{BCD} 8421$ code is
a) 00011011
b) 00100111
c) 11011001
d) 01101100 .
vi) In which code do the successive code characters differ in only one position ?
a) Gray
b) $\mathrm{Xs}-3$
c) 8421
d) Hamming code.
vii) The output of a gate is low if and only if all its inputs are high. It is true for
a) AND
b) X -NOR
c) NOR
d) NAND.
viii) The no. of rows in the truth table in the 4 input gate is
a) 4
b) 8
c) 12
d) 16 .
ix) A bubbled AND gate is equivalent to a

a) OR gate
b) NAND gate
c) NOR gate
d) $\mathrm{X}-\mathrm{OR}$ gate.
x) What is the minimum no. of NAND gates required to realize an $\mathrm{X}-\mathrm{OR}$ gate ?
a) 3
b) 4
c) 5
d) 6 .
xi) $\mathrm{A}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+$ \qquad =
a) $\mathrm{A}+\mathrm{B}+\mathrm{C}+\ldots \ldots$
b) $\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}+\ldots .$.
c) 1
d) 0 .
xii) A code used for labelling the cells of a K-map is
a) 8-4-2-1 binary
b) Hexadecimal
c) Gray
d) Octal.
xiii) How many full adders are required to construct m bit parallel adder ?
a) $\mathrm{m} / 2$
b) $\mathrm{m}-1$
c) m
d) $\mathrm{m}+1$.

CS/B. TECH (CSE/IT)/SEM-3/EC-312/2010-11
xiv) A PLA is

a) Mask programmable
b) Field programmable
c) Can be programmed by a user
d) Can be erased and programmed.
xv) A carry look ahead adder is frequently used for addition because, it
a) is faster
b) is more accurate
c) uses fewer gates
d) costs less.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$
3 \times 5=15
$$

2. Convert J-K to S-R and J-K to T.
3. Explain Master Slave Flip-Flop.
4. Design MOD-10 synchronous counter and draw the timing diagram.
5. With the help of a block diagram, explain the working principle of a serial adder.

CS/B. TECH (CSE/IT)/SEM-3/EC-3 1-2P2010-11
Uresh
6. Define the following parameters of DACs
a) Resolution
b) Offset error
c) Monotonicity
d) Settling error
e) Percentage resolution.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
7. a) Simplify the following function by means of tabulation methods.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,4,7,9,11,13,15)+\Sigma \mathrm{d}(3,5)$
b) Minimize the following expression using Karnaughmap :
i) $\quad F(A, B, C, D)=\Pi M(0,1,3,8,10,15)+\Pi d(11,13,14)$
ii) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,4,7,9,13,15)+\Sigma \mathrm{d}(10,14)$
8. a) Implement the following function using 4:1 MUX only :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,3,6,8,9,12,14)$

CS/B. TECH (CSE/IT)/SEM-3/EC-312/2010-11

b) Write down the excitation table of JK and D flip-flop and derive the excitation equation for these two flip-flops.
c) Design a 4-bit up / down asynchronous counter using all JK flip-flops and other necessary logic gates. Use one direction control input. If $M=0$, the counter will count up and for $M=1$, the counter will count down. $3+6+6$
9. a) With the help of a necessary circuit diagram, explain the operation of dual slope ADC.
b) Distinguish between ROM, PLA and PLDs as elements realising Boolean function.
c) Find the conversation time of a successive approximation A/D converter which uses a 2 MHz clock and a 5-bit binary ladder containing 8 V reference. What is the conversion rate? $6+5+4$
10. a) Design an n-bit full subtracter using full subtracter only and explain its operation.
b) Implement the BCD to Excess-3 code conversion using ROM.
c) Design a bi-directional shift registers and explain its operation.
$4+5+6$

CS/B. TECH (CSE/IT)/SEM-3/EC-31-292010-11

11. Write short notes on any three of the following:
a) Even Parity Generator and Checker
b) SOP and POS canonical forms of binary subtraction
c) Johnson Counter
d) Priority Encoder
e) BCD adder
f) Flash memory
g) $\quad \mathrm{BCD}$ to 7-segment decoder.

