Name :	A
Roll No. :	
Inviailator's Signature :	

2010-11 DIGITAL ELECTRONICS AND LOGIC DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) The race-around condition does not occur in Flip-Flop
 - a) J-K

b) Master slave

c) T

- d) None of these.
- ii) A message bit is 010101. We are using even parity generator, so that the parity bit added to the message bit is
 - a) 0

b) 1

c) 0 & 1

d) None of these.

3201 [Turn over

111)	If, $(128)_{10} = (1003)_b$, the possible base b is				
	a)	3	b)	4	
	c)	5	d)	6.	
iv)	Which of the following codes is not a BCD code?				
	a)	Gray	b)	Xs-3	
	c)	8421	d)	All of these.	
v)	(11011) ₂ in BCD 8421 code is				
	a)	00011011	b)	00100111	
	c)	11011001	d)	01101100.	
vi)	In which code do the successive code characters differ				
	in only one position ?				
	a)	Gray	b)	Xs-3	
	c)	8421	d)	Hamming code.	
vii)	The output of a gate is low if and only if all its inputs				
	are high. It is true for				
	a)	AND	b)	X-NOR	
	c)	NOR	d)	NAND.	
viii)	The no. of rows in the truth table in the 4 input gate is				
	a)	4	b)	8	
	c)	12	d)	16.	
3201		2			

A bubbled AND gate is equivalent to a ix)

> OR gate a)

NAND gate b)

c) NOR gate d) X-OR gate.

What is the minimum no. of NAND gates required to x) realize an X-OR gate?

3 a)

b)

5 c)

d) 6.

 $A + A'B + A'B'C + A'B'C'D + \dots =$ xi)

A + B + C + b) A' + B' + C' + D' +

c)

d) 0.

xii) A code used for labelling the cells of a K-map is

8-4-2-1 binary a)

Hexadecimal b)

Gray c)

d) Octal.

xiii) How many full adders are required to construct m bit parallel adder?

a) m/2 b) m-1

c) m d) m+1.

xiv) A PLA is

- a) Mask programmable
- b) Field programmable
- c) Can be programmed by a user
- d) Can be erased and programmed.
- xv) A carry look ahead adder is frequently used for addition because, it
 - a) is faster
- b) is more accurate
- c) uses fewer gates
- d) costs less.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Convert J-K to S-R and J-K to T.
- 3. Explain Master Slave Flip-Flop.
- 4. Design MOD-10 synchronous counter and draw the timing diagram.
- 5. With the help of a block diagram, explain the working principle of a serial adder.

3201 4

- 6. Define the following parameters of DACs
 - a) Resolution
 - b) Offset error
 - c) Monotonicity
 - d) Settling error
 - e) Percentage resolution.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Simplify the following function by means of tabulation methods.
 - F (A, B, C, D) = Σ m (0, 1, 4, 7, 9, 11, 13, 15) + Σ d (3, 5)
 - b) Minimize the following expression using Karnaughmap:
 - i) $F(A, B, C, D) = \Pi M (0, 1, 3, 8, 10, 15) + \Pi d (11, 13, 14)$
 - ii) $F(A, B, C, D) = \sum m(0, 4, 7, 9, 13, 15) + \sum d(10, 14)$
- 8. a) Implement the following function using 4:1 MUX only : $F(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 9, 12, 14)$

- b) Write down the excitation table of JK and D flip-flop and derive the excitation equation for these two flip-flops.
- c) Design a 4-bit up / down asynchronous counter using all JK flip-flops and other necessary logic gates. Use one direction control input. If M=0, the counter will count up and for M=1, the counter will count down. 3+6+6
- 9. a) With the help of a necessary circuit diagram, explain the operation of dual slope ADC.
 - b) Distinguish between ROM, PLA and PLDs as elements realising Boolean function.
 - c) Find the conversation time of a successive approximation A/D converter which uses a 2 MHz clock and a 5-bit binary ladder containing 8V reference. What is the conversion rate?

 6 + 5 + 4
- 10. a) Design an n-bit full subtracter using full subtracter only and explain its operation.
 - b) Implement the BCD to Excess-3 code conversion using ROM.
 - c) Design a bi-directional shift registers and explain its operation. 4 + 5 + 6

3201 6

11. Write short notes on any three of the following:

- a) Even Parity Generator and Checker
- b) SOP and POS canonical forms of binary subtraction
- c) Johnson Counter
- d) Priority Encoder
- e) BCD adder
- f) Flash memory
- g) BCD to 7-segment decoder.

3201 7 [Turn over