
MATERIAL SCIENCE AND TECHNOLOGY (SEMESTER - 4)

CS/B.TECH (CHE-N)/SEM-4/CHE-403/09

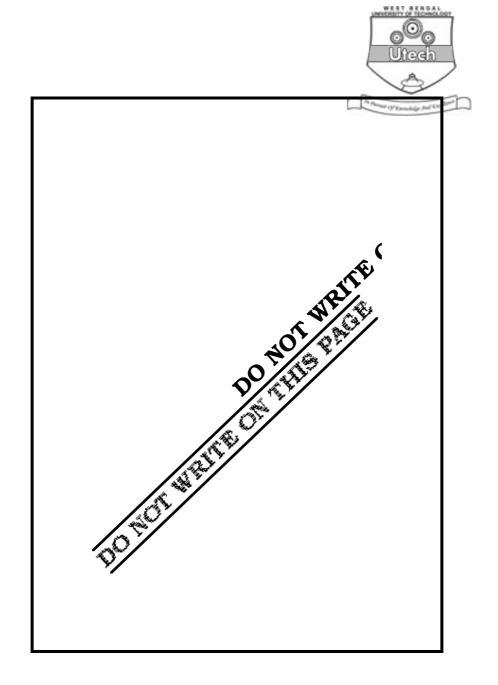
1.	Signature of Invigilator					d	200	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	U Lucker	- 	<u>‡</u>	_ ===
2.		. No.										
	Roll No. of the Candidate											
	CS/B.TECH		-					 / 09		 		- – –

MATERIAL SCIENCE AND TECHNOLOGY (SEMESTER - 4)

Time: 3 Hours] [Full Marks: 70

INSTRUCTIONS TO THE CANDIDATES:

- This Booklet is a Question-cum-Answer Booklet. The Booklet consists of 32 pages. The questions of this 1. concerned subject commence from Page No. 3.
- 2. In Group - A, Questions are of Multiple Choice type. You have to write the correct choice in the box provided against each question.
 - b) For Groups - B & C you have to answer the questions in the space provided marked 'Answer Sheet'. Questions of Group - B are Short answer type. Questions of Group - C are Long answer type. Write on both sides of the paper.
- Fill in your Roll No. in the box provided as in your Admit Card before answering the questions. 3.
- 4. Read the instructions given inside carefully before answering.
- You should not forget to write the corresponding question numbers while answering. 5.
- Do not write your name or put any special mark in the booklet that may disclose your identity, which will 6. render you liable to disqualification. Any candidate found copying will be subject to Disciplinary Action under the relevant rules.
- 7. Use of Mobile Phone and Programmable Calculator is totally prohibited in the examination hall.
- You should return the booklet to the invigilator at the end of the examination and should not take any 8. page of this booklet with you outside the examination hall, which will lead to disqualification.
- 9. Rough work, if necessary is to be done in this booklet only and cross it through.


No additional sheets are to be used and no loose paper will be provided

FOR OFFICE USE / EVALUATION ONLY Marks Obtained Group - A Group - B Group - C Total Examiner's Question Number Marks Signature Marks **Obtained**

Head-Examiner	Co-Ordinator	/Scrutineer

4473-(08/06)

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 MATERIAL SCIENCE AND TECHNOLOGY **SEMESTER - 4**

Time: 3 Hours] [Full Marks: 70

Graph sheet is provided on Page 31.

GROUP - A

			(Multiple Choice	Type (guestions)
1.	Cho	ose th	he correct alternatives for any $t\epsilon$	en of th	the following: $10 \times 1 = 10$
	i)	Carl	bon content of steel is	pe	r cent.
		a)	0.1 - 2	b)	4 – 6
		c)	2 - 4	d)	0.001 - 0.01.
	ii)	How	many atoms are there per uni	t cell ir	a body centred cubic lattice ?
		a)	2	b)	3
		c)	4	d)	6.
	iii)		rosion resisting property of c	east ire	on are significantly improved by the
		a)	tungsten	b)	vanadium
		c)	silicon	d)	all (a), (b) and (c).
	iv)		ability of a material to offer sure of its	resista	ance to scratching or indentation is a
		a)	brittleness	b)	toughness
		c)	hardness	d)	resilience.

CS/B.TECH (CHE-N)/SEM-4/CHE-403/09

		4							
v)	The	electrical conductivity of a		decreases with rise in temp	perature.				
	a)	metal/alloy	b)	semi-conductor					
	c)	dielectric	d)	none of these					
vi)	Cre	by							
	a)	rubber	b)	acrylics					
	c)	lead	d)	plastics.					
vii)	For	hexagonal crystal structure, the	e relatio	on between the lattice consta	ints a, b, o				
	and	angles α , β , γ is							
	a)	$a = b = c$ and $\alpha = \beta = \gamma = 90^{\circ}$							
	b)	$a = b = c$ and $\alpha = \beta = \gamma \neq 90^{\circ}$							
	c)	$a = b \neq c$ and $\alpha = \beta = 90^{\circ}$, $\gamma =$	120°						
	d)	$a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$.							
viii)	An	An elastic behaviour of materials is expressed in terms of							
	a)	hysteresis loop area	b)	stress-strain curve					
	c)	relaxation time	d)	none of these.					
ix)	Whi	ich of the following heat trea	tment	processes is used for soft	ening the				
	har	dened material ?							
	a)	Normalising	b)	Tempering					
	c)	Annealing	d)	None of these.					
x)	A material is called 'ductile', if it can be								
	a)	drawn into wires							
	b)	hammered into a thin sheet							
	c)	fractured without deformation	l						
	d)	made lustrous by heating it.							

5

		•		5		
	xi)	Lead	ching is an unit operation unde		MEST SENSALOW	
		a)	Electro-metallurgy	b)	Pyro-metallurgy ch	
		c)	Hydro-metallurgy	d)	None of these	
	xii)	The	main difference between calcin	nation a	nd roasting is	-
		a)	calcination is done in excess	s oxyge	n whereas roasting is o	lone in limited
		b)	calcination is done in limite	d oxyge	n whereas roasting is o	lone in excess
		c)	calcination is done in excess oxygen	oxygen	whereas roasting is don	e in absence of
		d)	calcination is used in oxide o	ores, roa	sting is done in sulphide	e ores.
			GRO	U P – B		
			(Short Answer	Гуре Qı	estions)	
			Answer any three of the	he follov	ring questions.	$3 \times 5 = 15$
2.	Wha	t do j	you understand by Bravais la	attices ?	Differentiate between	nonoclinic and
	tricli	nic cı	rystal systems.			1 + 4
3.	Defi	ne ato	omic packing factor. Determine	atomic	packing factor for a BCC	C crystal.
						2 + 3
4.	Defii	ne pla	stic deformation of a material.	Define	strength and toughness	of engineering
	mate	erials.				1 + 4
5.	Wha	t do	you mean by slag ? Differer	ntiate b	etween calcination and	roasting with
	exan	nple.				1 + 4

6.

Write short notes on slip and twining mechanism. $\,$

7

6 **GROUP – C**

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

7. What do you mean by dislocation in a material? Explain edge dislocation. 1 + 5a) b) What is creep? Describe the mechanism of creep with a single graph. 1 + 53 What do you understand by strain hardening? c) 8. a) Draw the iron-carbon phase diagram showing different phase fields and explain 7 salient points. b) Draw the T-T-T curve of eutectoid steel and explain the main transformations. 8 9. What is fatigue fracture? How can the fatigue life of a component be a) improved? 2 + 2b) What is corrosion current? With suitable examples, describe galvanic protection, cathodic protection and different types of non-metallic coatings. 2 + 910. Write down the chemical reactions that occur in the blast furnace during the a) 5 extraction of iron. b) Explain the L.D. process of making steel. Write down the advantages of L.D. 7 + 3process over open hearth process. 2 11. What are the principles of Hydrometallurgy and Electrometallurgy? a) How can Aluminium be extracted by using Hall-Heroult process? 6 b)

END

What is Electrorefining? Describe the electrorefining process of Cu.

c)