

CS/B.TECH (CHE-N)/SEM-3/CHE-302/2012-13

2012

INDUSTRIAL STOICHIOMETRY

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) $\quad 1^{\circ} \mathrm{Brix}$ is equivalent to a sugar solution
a) 10% sugar
b) 1% sugar
c) $0 \cdot 1 \%$ sugar
d) 0.01% sugar.
ii) $1 \mathrm{~kg} / \mathrm{cm}^{2}$ is equal to
a) 5 m water
b) 1 m water
c) 760 mm water
d) 10 m water.
iii) Dimension of viscosity is
a) $\quad M L^{-1} T^{-1}$
b) $M L T^{-1}$
c) $\quad M L^{-1} T$
d) $\quad M^{-1} L T^{-1}$.
iv) The chart which is related to Antoine equation is \qquad concentration.
a) Ostwald
b) Cox
c) Moller's
d) enthalpy.

CS/B.TECH (CHE-N)/SEM-3/CHE-302/2012-13

v) Which one is not a dimensionless group ?
a) $\frac{k}{\rho . C p}$
b) $\frac{h . D}{k}$

d) none of these.
c) $\frac{C p . \mu}{k}$
vi) The temperature coordinate on the 100% saturation line corresponding to the humidity of air at a certain temperature is
a) wet bulb temperature
b) adiabatic saturation temperature
c) dew point temperature
d) dry bulb temperature.
vii) A purge steam is a steam
a) one which is returned to the process unit
b) one that is bled off to remove the accumulation of inerts or unwanted materials that might otherwise build up in the recycle steam
c) one that skips one or more stages of the process and goes directly to another stage
d) one that is withdrawn as product.
viii) For a continuous steady state process the material balance on a reactive species is written as
a) Input = Output
b) Input + Generation + Accumulation $=$ Output + Consumption
c) Input + Generation $=$ Output + Consumption
d) Input + Generation $=$ Accumulation.

CS/B.TECH (CHE-N)/SEM-3/CHE-302f2012-13

Unesh
ix) The negative of the standard heat of combustion of a fuel with $\mathrm{H}_{2} \mathrm{O}$ (1) as a combustion product is known as
a) lower heating value
b) higher heating value
c) the standard heat of formation
d) none of these.
x) The enthalpy change for the reaction $\mathrm{C}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})$ are 26.42 and -67.63 kcal respectively. Then the enthalpy change for the reaction $\mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})$ is
a) +94.05 kcal
b) $\quad-94.05 \mathrm{kcal}$
c) -41.21 kcal
d) +41.21 kcal .
xi) Heat of reaction is a function of the
a) pressure
b) temperature
c) neither (a) nor (b)
d) both (a) and (b).
xii) Heat of \qquad of a fuel is called its calorific value.
a) formation
b) reaction
c) combustion
d) vaporization.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following $\quad 3 \times 5=15$
2. A flue gas has the following composition by volume measured at 760 mm Hg and $30^{\circ} \mathrm{C} . \mathrm{CO}_{2}=25 \%, \mathrm{CO}=0 \cdot 2 \%$, $\mathrm{SO}_{2}=1 \cdot 2 \%, \mathrm{~N}_{2}=68 \%$ and $\mathrm{O}_{2}=5 \cdot 6 \%$. Calculate (i) the average molecular weight, (ii) the composition by weight.
3. Calculate the volume in liters of NH3 gas under a pressure of 1 atm and at a temperature of $20^{\circ} \mathrm{C}$ that can be dissolve in 100 litres of water at the same temperature.

Data : for ammonia and water at $20^{\circ} \mathrm{C}$, Henry's constant is $2 \cdot 7 \mathrm{~atm} /$ mole fraction.
4. A producer gas made from coke has the following composition by volume $\mathrm{CO}-28 \%, \mathrm{CO}_{2}-3.5 \%, \mathrm{O}_{2}-0.5 \%$ and $\mathrm{N}_{2}-68 \%$. The gas is burned with such a quantity of air that the oxygen from the air is 20% in excess of the net oxygen required for complete combustion. If the combustion is 98% complete calculate the weight and composition in volumetric percentage of the gaseous products formed per 100 kg of gas burned.
5. Using Antoine equation, calculate the vapor pressure of
(i) Acetic acid at 316 K and (ii) SO_{3} at 293.5 K
P^{*} is in mm of Hg ; and T is in K

	A	B	C
Acetic acid	$15 \cdot 8667$	$4097 \cdot 86$	$-27 \cdot 4937$
SO_{3}	$13 \cdot 8467$	$1777 \cdot 66$	$-125 \cdot 1972$

6. Find the heat of formation of chloroform $\left(\mathrm{CHCl}_{3}\right)$ from the following data :

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{1}=-68317 \cdot 4 \mathrm{cal} \\
\mathrm{C}(\mathrm{\beta})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{2}=-94051 \cdot 8 \mathrm{cal} \\
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{HCl}(\mathrm{aq}) & \Delta \mathrm{H}_{3}=-40023 \mathrm{cal} \\
\mathrm{CHCl}_{3}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) & \\
\quad=\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{aq}) & \Delta \mathrm{H}_{4}=-121800 \mathrm{cal}
\end{array}
$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) Describe the Buckingham method for forming dimensionless groups.

CS/B.TECH (CHE-N)/SEM-3/CHE-302f2012-13

URESh
b) The efficiency η of a fan depends on density ρ, dynamic viscosity μ of the fluid, angular velocity 0 , diameter D of the rotor and the discharge Q. Express η in terms of dimensionless parameter.
$5+10$
8. a) $50,000 \mathrm{~m}^{3} / \mathrm{h}$ of a gas mixture containing $5 \cdot 46 \% \mathrm{NO}_{2}$, $2 \cdot 14 \% \mathrm{~N}_{2} \mathrm{O}_{4}$, rest N_{2} on dry basis enters the bottom of an absorption tower (percentages represent mole\%). $500 \mathrm{l} / \mathrm{min}$ caustic soda solution (density $1.25 \mathrm{~kg} / \mathrm{l}$) containing 24% by mass NaOH is introduced at the top of the column. The outgoing gas is found to contain $3.93 \% \mathrm{NO}_{2}, 0.82 \% \mathrm{~N}_{2} \mathrm{O}_{4}, 0.25 \% \mathrm{NO}$ and rest N_{2} on dry basis. The temperature and pressure of the gas are 295.5 K and 100 KPa . Calculate the composition of the aqueous liquor leaving the column. Assume that the gas mixture leaving the tower contains 0.045 Kmol $\mathrm{H}_{2} \mathrm{O} / \mathrm{Kmol}$ dry gas mixture.
b) A continuous countercurrent dryer is used to dry 425 kg dry solid $/ \mathrm{hr}$ containing 0.04 kg total moisture $/ \mathrm{kg}$ dry solid to a value of 0.018 kg total moisture/kg dry solid. The solid enters at $25^{\circ} \mathrm{C}$ and leaves at $60^{\circ} \mathrm{C}$.

Air used as heating medium enters at $84^{\circ} \mathrm{C}$ with a humidity of 0.018 kg water $/ \mathrm{kg}$ dry air and leaves at $33^{\circ} \mathrm{C}$. Calculate the air flow rate and the outlet humidity assuming that heat losses from the dryer are $9300 \mathrm{KJ} / \mathrm{hr}$. The heat capacity of the dry solid is $1.465 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$. Humid heat in $\mathrm{KJ} / \mathrm{kg}$ dry air is given as: $\mathrm{Cs}=1.005+1.88 \mathrm{H}$ and latent heat water at $0^{\circ} \mathrm{C}$ is $2501 \mathrm{KJ} / \mathrm{kg}$. Draw the process flow diagram. For the air-water vapour mixture, if the dry and wet bulb temperatures are $65^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$, compute the humidity and corresponding humid volume of air using psychometric chart. (Psychometric chart required) $8+7$
9. Fuel oil having the formula $\mathrm{C}_{18} \mathrm{H}_{36}$ is burnt in 50% excess dry air. The products of the combustion are dried to remove all the water. Analysis of the flue gas shows a molar ratio of CO_{2} to CO of 2. Determine the flue gas compositions and volumetric flow rate with molar density at 1368 K and $124 \cdot 1 \mathrm{KPa}$ after drying if $2268 \mathrm{~kg} / \mathrm{hr}$ of the fuel oil is burnt. The volume of $1 \mathrm{~kg}-\mathrm{mol}$ flue gas is $12.83 \mathrm{~m}^{3}$.

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{36}+27 \mathrm{O}_{2} \longrightarrow 18 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{18} \mathrm{H}_{36}+18 \mathrm{O}_{2} \longrightarrow 18 \mathrm{CO}+18 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

10. a) A fertilizer plant produces ammonia by reforming naptha with steam. The synthesis gas, obtained from the methanator is passed through the converter after mixing with the recycle steam. The conversion per pass is limited to 25%. The composition of fresh feed is $\mathrm{CH}_{4}-0.7 \%, \mathrm{Ar}-0.3 \%, \mathrm{H}_{2}-74 \cdot 25 \%$ and $\mathrm{N}_{2}-24.75 \%$ on molar basis. The converter outlet gases pass through a heat exchanger where it cools down. Later the gases are passed through a chiller-cum-separator which separates 65% of the ammonia present in the converter outlet gas. Noncondensible gases and uncondensed gas are recycled back. In order to limit the concentration of inerts, to ($\left.\mathrm{CH}_{4}+\mathrm{Ar}\right) 10 \mathrm{~mol} \%$ in the mixed feed, a portion of the recycle steam is purged. Based on a fresh feed rate of $100 \mathrm{~K} \mathrm{~mol} / \mathrm{s}$, calculate the
i) recycle feed rate and recycle ratio
ii) the purge gas rate
iii) the product ammonia rate
iv) composition of various streams

The process flow sheet is as follows :

b) A small still is separating propane and butane at $135^{\circ} \mathrm{C}$ and initially contains 10 Kmol of a mixture whose composition is $x=0.3(x=$ mole fraction of butane $)$. Additional mixture ($x_{F}=0 \cdot 3$) is fed at the rate of $5 \mathrm{Kmol} / \mathrm{hr}$. If the total volume of liquid in the still is constant, and the concentration of vapour from the still $\left(x_{D}\right)$ is related to that of liquid in still by the relation

$$
x_{D}=\frac{x_{s}}{1+x_{s}}
$$

How long will it take for x_{s} to change from 0.3 to 0.4 ?

$$
10+5
$$

11. a) The heat capacity of carbon monoxide is given by the following equations :

$$
C_{p}=6 \cdot 935+6 \cdot 77 \times 10^{-4} T+1 \cdot 3 \times 10^{-7} T^{2} ;
$$

where $C_{p}=\mathrm{cal} /\left(\mathrm{gmol}^{\circ} \mathrm{C}\right)$
What is the enthalpy change associated with heating carbon-monoxide from $500^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$.

CS/B.TECH (CHE-N)/SEM-3/CHE-302/2012-13

b) The sulphate process for the production of HGl acid is described by the following reaction :
 $2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \Leftrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$

Calculate the heat of reaction and the consumption of coke, over gas for production of 600 kg of HCl .

The heat of formation ($\mathrm{MJ} / \mathrm{kmol}$) is
$\mathrm{NaCl}(-410 \cdot 9) ; \mathrm{H}_{2} \mathrm{SO}_{4}(-811 \cdot 3) ; \mathrm{Na}_{2} \mathrm{SO}_{4}(-1384 \cdot 0)$;
$\mathrm{HCl}(-92 \cdot 3)$
The calorific value of the coke-oven gas is $19.0 \mathrm{MJ} / \mathrm{m} 3$.

$$
7+8
$$

