|                           | Utech |
|---------------------------|-------|
| Name:                     |       |
| Roll No. :                |       |
| Invigilator's Signature : |       |

# STRUCTURAL DYNAMICS AND EARTHQUAKE **ENGINEERING**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### **GROUP - A**

(Multiple Choice Questions)

Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$ 

i) In a single degree freedom damped forced vibration, magnification factor  $\mu$  is given by ( if r = frequency ratio and  $\varepsilon$  = damping ratio )

a) 
$$\frac{1}{\sqrt{(1-r^2)^2+4\varepsilon^2r^2}}$$
 b) 
$$\frac{1}{\sqrt{(1-r)^2+4\varepsilon r}}$$

b) 
$$\frac{1}{\sqrt{(1-r)^2+4\varepsilon r}}$$

c) 
$$\frac{1}{\sqrt{(1-r^2)^2+4\epsilon r}}$$
 d) none of these.

8133 [ Turn over



a)  $k_1 + k_2$ 

series is

ii)

- b)  $\frac{k_1 k_2}{k_1 + k_2}$
- c)  $\frac{1}{k_1} + \frac{1}{k_2}$
- d) none of these.

iii) A system is said to have overdamped condition when

a)  $c > c_{cr}$ 

b)  $c = c_{c}$ 

c)  $c < c_{cr}$ 

d) All of these.

iv) For underdamped free vibration, logarithmic decrement is given by

- a)  $\frac{2\pi D}{\sqrt{1-D^2}}$
- b)  $\frac{2\pi\sqrt{1-D^2}}{D}$
- c)  $\frac{2\sqrt{1-D^2}}{\pi D}$
- $d) \qquad \frac{2\pi}{D\sqrt{1-D^2}}.$

v) The equation of motion for undamped free vibration is

- a)  $m\ddot{u} + ku = 0$
- b)  $m\ddot{u} + c\dot{u} + ku = f(t)$
- c) none of (a) and (b)
- d) both of (a) and (b).



- vi) A dynamic periodic load is that which
  - a) varies in magnitude with time and repeats itself at regular intervals
  - b) varies in magnitude with time and does not repeat itself at regular intervals
  - c) does not vary in magnitude with time and repeats itself at regular intervals
  - d) none of these.
- vii) Earthquake resistant design and construction of buildings is guided by
  - a) IS 1893
- b) IS 4326
- c) IS 13827
- d) none of these.
- viii) Logarithmic decrement (  $\delta$  ) is defined as ( where  $\,Y_{1}^{}\,$  and  $\,Y_{2}^{}\,$  are the two consecutive peaks )
  - a)  $\delta = \log (Y_1 / Y_2)$  in free vibration
  - b)  $\delta = ln (Y_2 / Y_1)$  in forced vibration
  - c)  $\delta = ln (Y_1 / Y_2)$  in free vibration
  - d)  $\delta = ln (Y_2 / Y_1)$  in free vibration.

| ix)  | The                                                       | degree of relative isola | ation is | Urean                            |  |
|------|-----------------------------------------------------------|--------------------------|----------|----------------------------------|--|
|      | a)                                                        | Transmissibility         | b)       | Resonance                        |  |
|      | c)                                                        | Damping                  | d)       | Vibration.                       |  |
| x)   | The                                                       | ratio of Importance      | factor   | ( I ) and Response               |  |
|      | reduction factor ( ${\it R}$ ) shall not be               |                          |          |                                  |  |
|      | a)                                                        | Less than unity          | b)       | Equal to unity                   |  |
|      | c)                                                        | Greater than unity       | d)       | None of these.                   |  |
| xi)  | A vi                                                      | brating system consis    | sting o  | f a weight of $W = 15 \text{ N}$ |  |
|      | and                                                       | a spring with stiffn     | ess k    | = 2  N/m. The angular            |  |
|      | natural frequency of the system is                        |                          |          |                                  |  |
|      | a)                                                        | 4.4                      | b)       | 5.7                              |  |
|      | c)                                                        | 3.5                      | d)       | 5.0.                             |  |
| xii) | A vi                                                      | brating system consis    | sts of a | mass of 5 kg, a spring           |  |
|      | stiffness of 5 N/mm and a dashpot with a dampin           |                          |          |                                  |  |
|      | coefficient of $0.1\ N\text{-s/m}$ . The damping ratio is |                          |          |                                  |  |
|      | a)                                                        | 0.413                    | b)       | 0.313                            |  |
|      | c)                                                        | 0.922                    | d)       | 0.612.                           |  |
| 8133 |                                                           | 4                        |          |                                  |  |
|      |                                                           |                          |          |                                  |  |



### (Short Answer Type Questions)

 $3 \times 5 = 15$ Answer any *three* of the following.

2. Write short notes on the following: 3 + 2

- a) Elastic rebound theory
- Natural frequency. b)
- Determine the magnification factor of forced vibration 3. produced by an oscillator fixed at the middle of a beam at a speed of 600 rpm. The weight concentrated at the middle of the beam is 5000 N and produces a statical deflection of the beam equal to 0.025 cm. Neglect the weight of the beam and assume that the damping is equivalent to a force acting at the middle of the beam proportional to the velocity and equal to 500 N at a velocity of 2.5 cm/sec.
- 4. What is Duharmels integral? Discuss its application in solving structural dynamics problems.
- 5. Discuss the underdamped and overdamped systems with relevant graphs and expressions.



m = Mass = 200 kg. Determine the equivalent stiffness and natural frequency of the system.



**GROUP - C** 

## (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

7. Consider the two-storied building as shown below :



- a) Derive the mass and stiffness matrices.
- b) Calculate the natural periods and draw mode shapes.

7 + 8

8133



- 8. a) Discuss the graphs for magnification factor versus frequency ratio.
  - b) For a block foundation whose weight is 2500 kg is resting on soil spring of stiffness k = 200000 N/m.
    - (i) Determine natural frequency.
    - (ii) If the foundation is subjected to a harmonic force  $100 \sin 2t$ , evaluate the dynamic magnification factor considering damping is zero.
    - (iii) If the foundation is having damping coefficient 5 %, evaluate its magnitude of damping.
  - c) What is vibration isolators and why is it required?

5 + 7 + 3

9. Write short notes on the following:

 $3 \times 5$ 

- a) Transmissibility ratio
- b) Resonance
- c) Seismograph.
- 10. a) What is logarithmic decrement? Derive its expression.
  - b) A rotor of mass 2kg was running at a constant speed of 30 cycles/sec with an eccentricity of 160 mm. The motor was mounted on an isolator with damping factor of 0.25. Determine the stiffness of the isolator spring such that 15% of the unbalanced force is transmitted to the foundation. Also determine the magnitude of the transmitted forces.

11. A five-storied RCC framed building will be constructed in Delhi in medium soil. Floor to floor weight \$\displays 2. m\$. It is a square building of plan size 12 m × 12 m. Columns are spaced 4 m c/c in both the direction. Live load on floor = 4 kN/m² and no live to be considered on roof. Thickness of floor and roof = 130 mm. The size of beam may be considered 250 mm × 450 mm and columns may be considered 400 mm × 400 mm. Determine the base shear and its distribution along the height as per IS 1893 – 2002.

8133 8