	<u>Unego</u>
Name :	A
Roll No.:	As the own OCE amounting and Experience
Invigilator's Signature :	

2012

WATER RESOURCES ENGINEERING-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the any ten of the following: $10 \times 1 = 10$
 - i) An Unconfined aquifer is one in which
 - a) water surface under the ground is at atmospheric pressure
 - b) water is confined under pressure less than atmospheric pressure between impermeable strata
 - c) water is confined at atmospheric pressure between impermeable strata
 - d) water is confined under pressure greater than atmospheric pressure between impermeable strata.

7106 Turn over

- a) drawdown per unit discharge
- b) discharge per unit drawdown
- c) drawdown per certain given discharge
- d) discharge per certain given drawdown.
- iii) A perched aquifer is essentially found within
 - a) an unconfined aquifer b) a confined aquifer
 - c) an aquiclude
- d) none of these.
- iv) The most economical span length of bridges is one for which
 - a) cost of superstructure is more than cost of substructure
 - b) cost of substructure is more than cost of superstructure
 - c) both cost of superstructure and substructure are equal
 - d) none of these.
- v) Deep tubewells in soft alluvium can best be drilled by
 - a) Rotary drilling rigs
 - b) Percussion drilling
 - c) Down to hole hammer (DTH) rigs
 - d) None of these.
- vi) The Lacey's regime width of the stream is given by
 - a) W = 4.75 Q
- b) W = $4.75 \sqrt{Q}$
- c) $W = 4.75 Q^{2/3}$
- d) None of these.

- vii) The repelling groynes which are largely constructed protecting from river embankments, as anti-erosion works, are
 - inclined upstream a)
- b) inclined downstream
- normal to the bank c)
- d) none of these.
- viii) Steady state drawdown in a confined aquifer is given by
 - $S_W = \frac{Q}{2\pi T} \ln \frac{R}{r_{\omega}}$
- a) $S_W = \frac{Q}{2\pi T} \ln \frac{R}{r_{\omega}}$ b) $S_W = \frac{Q}{2\pi T} \ln \frac{r_1 r_2}{r_{\omega}}$ c) $S_W = \frac{Q}{2\pi T} \ln \frac{h_2^2 h_1^2}{r_2/r_1}$ d) $S_W = \frac{Q}{2\pi K} \ln \left(\frac{R}{r_{\omega}}\right)^2$.
- ix) A river whose bed is built up due to deposition of sediment is called a
 - a) Degradomg river
- b) Aggrading river
- Meandering river c)
- d) Gorge.
- x) If the culvert exit and entrance are submerged, then
 - the hydraulics is the same as a pipe connecting two reservoirs
 - b) the structure is analysed as open channel flow
 - the headloss in the culvert includes only the minor c) losses
 - the analysis will not yield any result. d)
- The Darcy is the standard unit of xi)
 - a) storativity
- b) transmissivity
- specific yield c)
- d) intrinsic permeability.
- River training works are seldom required in xii)
 - Rocky stage of a river
 - b) Boulder stage of a river
 - Trough stage of a river c)
 - Deltaic stage of a river. d)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Name the various methods for river training and explain cutoff and cut-off ratio with heat sketch.
- 3. a) With neat sketch derive the Ghyben-Herzberg relation between Fresh & Saline water of sea for coastal aquifer.

3

- b) For a coastal aquifer the height of salt water column (Z) is measured as 60m below the M.S.L. What will be the minimum safe height of fresh water column (h_f) above the M.S.L which will not cause any sea water intrusion into this aquifer?
- Explain the classification of Water Resource Development
 Projects with their objectives.
- 5. Describe in brief:
 - a) Zone of aeration and saturation $2\frac{1}{2}$
 - b) Confined and unconfined aquifers. $2\frac{1}{2}$
- 6. Distinguish between normal and maximum scour depth. 5
- 7. Discuss the rational method of determining high flood discharge in connection with bridge design.

7106 4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

8. The following data are collected from a bridge site of a river:

Max. discharge = 19000 cumec,

Highest flood level = 260.00m

River bed level = 250m.

Average diameter of the river bed material = 0.10mm

Some Parameters of guide bank constructed across the bridge site of this river is also given as follows:

- i) Length of waterway (L) = 800 m
- Length of upsteam guide bank = 960m ii)
- Length of downstream guide bank = 200m iii)
- Upstream & downstream sweep angles are 135° & 60° iv) respectively & radius of upstream & downstream curved head are 250m & 125m respectively.

Design the remaining portion of guide bank & sketch the guide bank including the launching apron to train the river.

9. Derive the formula for discharge of a well in a honogeneous unconfined aquifer assuming equilibrium flow condition. State the assumptions on which the formula is based. 8

- b) A 30 cm diameter well penetrates 25 m below the static watertable. After 24 hrs of pumping @ 5400 litres/min, the water table in an observation well at 90 m from the main well is lowered by 0.53m and in a well 30 m away from the main well, the drawdown is 1.11m. Assuming steady state condition for the unconfined aquifer, determine (i) the coefficient of transmissibility and (ii) drawdown in main well.
- 10. a) A well is located in a 25m confined aquifer of permeability 30m/day & storage co-efficient 0.005. If the well is being pumped at the rate of 1750 lit/min calculate the drawdown at a distance 100m from the well after 20hrs of pumping.

Given for the value of u = 0.01; w(u) = 4.04u = 0.02; w(u) = 3.35

u = 0.03

w(u) = 2.96

6

- b) An Artesian well is pumped at a constant rate of $1000\,\mathrm{m}^3/\mathrm{day}$ from an extensive aquifer of average thickness 35m. If the specific storage of the aquifer is 3 \times $10^{-4}~\mathrm{m}^{-1}$ & co-efficient of permeability is $9.5/\mathrm{m}/\mathrm{day}$ find
 - i) The drawdown at a point 4m from the well after 12hrs of continuous pumping.
 - ii) The time during which the Cooper-Jacob Method (Straight line method) cannot be used.

11. What are guide banks?

Design and sketch the guide bank showing the details in line diagram and sections at various locations corresponding to the following data:

Maximum discharge = 8000 cumec

Highest flood level = 105 m

River bed level = 100m

Average dia of river bed materials = 0.12mm

(Assume any other data if necessary)

3 + 12

12. Write short notes on the following:

 5×3

- a) Different irrigation methods
- b) Aquiclude, Aquifuge, Aquitard
- c) Hydraulic Gradients and Hydraulic Conductivity
- d) Explain with neat sketch:
 - i) Perched aquifer
 - ii) Cone of depression.
- e) Field capacity and Permanent wilting point.

7106