	Utech
Name :	
Roll No. :	A Standard Will Associate 2nd Explana
Invigilator's Signature :	

CS / B.TECH (CE) / SEM-3 / CE-301 / 2010-11 2010-11

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

	$10 \times 1 = 10$
i)	The mean and standard deviation of a Standard Normal
	Distribution are respectively

Choose the correct alternatives for any ten of the following:

a) 1, 0

1.

b) 0, 1

c) 0,0

- d) 1, 1.
- ii) The probability of getting 2 or 3 or 4 from a throw of single dice is
 - a) $\frac{1}{6}$

b) $\frac{1}{2}$

c) 0

d) 1.

3153 [Turn over]

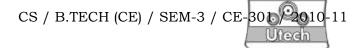
- The range of correlation coefficient is iii)
 - (-1, 1)

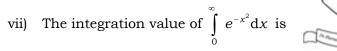
- [-1, 1] Annual (y)
- c) $(-\infty, +\infty)$
- d) none of these.
- When f(x) convergence in the interval $(-\pi,\pi)$ then $\int_{0}^{\infty} [f(x)]^{2} dx$ is equal to
 - a) $\pi \left[\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$ b) $2\pi \left[\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$
 - c) $\left[\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)\right]$ d) none of these.
- v) If F(s) is the Fourier transform of f(x), then the Fourier transform of f(ax), where a(>0) is a constant, is
 - a) $F\left(\frac{s}{a}\right)$

b) $\frac{1}{a}F\left(\frac{s}{a}\right)$

c) $\frac{1}{a}F(s)$

- The partial deferential equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial t^2}, c^2$ being vi) constant is known as
 - one dimensional wave equation a)
 - one dimensional heat-flow equation b)
 - two dimensional heat-flow equation c)
 - none of these. d)





c)
$$\sqrt{\pi}$$

d)
$$\sqrt{\frac{\pi}{2}}$$

viii) $\cos(5x)$ is a periodic function with the period

a)
$$2\pi$$

c)
$$\frac{2\pi}{5}$$

d) none of these.

ix) The order and degree of the *p.d.e.* $\frac{\partial^2 z}{\partial x \partial y} + \left(\frac{\partial z}{\partial x}\right)^2 = 0$ are

d) none of these.

x) The equation
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$$
 is

- a) Parabolic
- b) Hyperbolic

- c) Elliptic
- d) none of these.

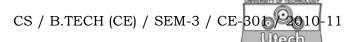
xi) Given $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(AB) = \frac{1}{4}$. Then the value of $P(\overline{A} \ \overline{B})$ is

a) $\frac{5}{12}$

b) $\frac{1}{12}$

c) $\frac{7}{12}$

d) none of these.



- xii) A box contains 6 white and 4 black balls. One ball is drawn. What is the probability is it that white?
 - a) $\frac{2}{5}$

b) $\frac{3}{5}$

c) $\frac{1}{\sqrt{5}}$

d) $\frac{4}{5}$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. A periodic function f(x) with period 2π is defined as follows:

$$f(x) = \begin{cases} 0, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$$

Find the Fourier series at $x = \pi$.

- 3. Solve the partial differential equation $z = px + qy + p^2 + pq + q^2$ and find its singular solution (The notations have their usual meanings).
- 4. Find the Fourier cosine transform of

$$f(x) = x, \ 0 < x < 1$$
$$= 2 - x, \ 1 < x < 2$$
$$= 0, x > 2$$

3153

- 5. There are three bags; first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white and one red. Find the probability that the balls so drawn came from the second bag.
- 6. Find the regression coefficients of y on x, of x on y and correlation coefficient between x and y from the following values:

 $\sum xy = 1500$, x = 15, y = 12, $\sigma_x = 64$, $\sigma_y = 9$ and the number of observations is 10, where the notations have their usual meanings.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Solve the partial differential equation

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - 4xy \frac{\partial^{2} z}{\partial x \partial y} + 4y^{2} \frac{\partial^{2} z}{\partial x^{2}} + 6y \frac{\partial z}{\partial y} = x^{3} y^{4}$$

b) Using the method of separation of variable,

solve
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, $u(0, t) = 0$, $u(4, t) = 0$, $u(x, 0) = \sin 3x$.

6 + 9

- 8. a) Find the complete integral of the partial differential equation $p^2q(x^2+y^2)=p^2+q$ where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y},$ z=z(x,y).
 - b) Find the Fourier series expansion of the periodic function of period 2π :

$$f(x) = x^2, -\pi \le x \le \pi$$

Hence, prove that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$
. 8 + 7

9. Solve the following heat condition equation:

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$$
 subject to the conditions

$$u(0,t) = 0$$
, $u(x,0) = e^{-x}$, $x > 0$, $u(x,t)$ is bounded where $x > 0$, $t > 0$ using Fourier transform.

- 10. a) State Tchebycheff's inequality. Show by Tchebycheff's inequality that in 2000 throws with a coin the probability that the number of heads lies between 900 and 1100 is at least $\frac{19}{20}$.
 - b) State and prove Baye's theorem.

The three identical boxes I, II, III contain respectively 4 white and 3 red balls, 3 white and 7 red balls, and 2 white and 3 red balls. A box is chosen at random and a ball is drawn out of it. If the ball is found to be white, what is the probability the box II was selected? 7 + 8

- 11. a) If X is a normal random variable $N(\mu, \sigma)$, then show that $E(X) = \mu$ and $Var(X) = \sigma^2$.
 - b) Solve the following one dimensional wave equation:

$$\frac{\partial^2 y}{\partial t^2} = c^2 \cdot \frac{\partial^2 y}{\partial x^2} \quad \text{with} \quad \left(\frac{\partial y}{\partial t}\right)_{t=0} = 0, y(x, 0) = f(x) \quad \text{using}$$

Fourier transform. 6 + 9

=========