	Uteah
Name:	
Roll No.:	In the property of the State of State o
Inviailator's Signature :	

CS/B.TECH(BT)/SEM-5/BT-502/2011-12

2011

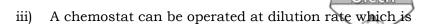
BIOREACTOR DESIGN AND ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words

as far as practicable.

GROUP - A (Multiple Choice Type Questions)


Choose the correct alternatives for any ten of the following: 1.

 $10 \times 1 = 10$

- Sherwood Number is given by the expression i)
 - a) $K_L d_f / D_{AB}$
- b) $K_L d_b / D_{AB}$
- c) $K_L L_C / D$ d) $K_L \rho / D_{AB}$.
- If the rate is given as $-r_A = k C_A^{0.6} C_B^{0.4}$ then the ii) molecularity and order of the reaction is
 - 1 and 1 a)
- b) 1 and 2
- 2 and 1 c)
- d) 2 and 2.

5109 [Turn over

CS/B.TECH(BT)/SEM-5/BT-502/2011-12

- a) higher than the specific growth rate
- b) lower than the specific growth rate
- c) equal to the specific growth rate
- d) not related to the specific growth rate.
- iv) A non-ideal reactor is characterized by
 - a) residence time distribution
 - b) Peclet number
 - c) combination of reactor
 - d) segregated model.
- v) For enzymatic reactions, at low substrate concentration, rate is
 - a) 1st order with respect to substrate concentration
 - b) zero order with respect to substrate concentration
 - c) fractional order with respect to substrate concentration
 - d) none of these.
- vi) If effectiveness factor is less than 1, the conversion in immobilized enzymatic reaction is
 - a) reaction rate limiting
 - b) oxygen concentration limiting
 - c) diffusion limiting
 - d) shear rate limiting.

- vii) Animal cell culture is best carried out in
 - a) batch culture
 - b) stirred tank reactor
 - c) bubble column reactor
 - d) air-lift fermentor.
- viii) Monod model is an equation of which of the following types?
 - a) Linear

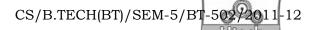
- b) Nonlinear
- c) Hyperbolic
- d) Parabolic.
- ix) A bubble column used for aerobic fermentation is best modelled by
 - a) plug flow
 - b) stirred tank
 - c) dispersion model
 - d) plug flow with axial dispersion.
- x) Trickle bed reactor is characterized by
 - a) high L/D ratio
 - b) high flow rate of the liquid
 - c) counter current flow of gas and liquid stream
 - d) mass transfer.
- xi) Change in impeller tip speed depends on
 - a) shear rate
- b) viscosity
- c) density
- d) surface tension.
- xii) In inhibitory enzyme kinetics, the inhibitor is substrate analogue in
 - a) allosteric enzymatic reaction
 - b) competitive inhibition
 - c) uncompetitive inhibition
 - d) non-competitive inhibition.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Liquid *A* decomposes by second order kinetics and in a batch reactor 50% of *A* is converted in a 5 minute run. How much longer would it take to reach 75% conversion?
- 3. A plug flow reactor ($2~{\rm m}^3$) processes an aqueous feed (100 litre/min) containing reactant A (C_{A0} = 100 mmol/litre). This reaction is reversible and represented by


A
$$\implies$$
 R, $-r_A = 0.04 \text{ (min}^{-1}) C_A - 0.01 \text{ (min}^{-1}) C_R$

What is the equilibrium conversion and the actual conversion in the reactor?

- 4. Write short notes on trickle bed reactor & membrane reactor.
- 5. Describe the method of determining $K_L a$ by the steady state method where the oxygen uptake rate is $q_{o_2} x$.
- 6. The optimum agitation speed for the cultivation at plant cells in a 3L fermenter equipped with four leafless was found to be 150 rpm. The length and diameter ratio at the fermenter is 3. What should be the (a) dimensions of a geometrically similar 1 m³ fermenter and (b) the impeller speed based on the same power consumption per unit volume ? Given, impeller diameter $D_I = 0 \cdot 3D$, where D is the diameter (internal) of the reactor.

4

5109

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Write short note on Hollow fiber reactor for the production of monoclonal antibodies.
 - b) How does dispersion no. link with the degree of mixing in a bioreactor?
 - c) What is the significance of tanks-in-series model to explain the behaviour of non-ideal reactors? How does the parameter N affect the E-curve generated by pulse input to the flowing stream in a vessel? 5+3+7
- 8. a) What are the characteristic features of a bubble column bioreactor used for aerobic fermentation? How does the liquid phase mass transfer coefficient affect the performance of a reactor?
 - b) A high molecular weight hydrocarbon gas is fed continuously to a heated mixed flow reactor where it cracks as follows: $A \rightarrow 5R$.

By changing the feed rate, different extent of cracking are obtained as follows:

F_{A_0} , mol/hr	0.3	1.0	3.0	5.0
$C_{A_{out}}$, mol/m ³	0.016	0.030	0.050	0.06

7 + 8

9. a) A specific microorganism is used for a chemostat culture of 60 m³ fermenter to produce alcohol from glucose. The feed contains 12 kg/m³ glucose. The kinetic parameters of the system are : $K_s = 0.2$ kg/m³, $\mu_{\text{max}} = 0.3 \text{ hr}^{-1}, \qquad Y_{X/S} = 0.06, \qquad Y_{P/X} = 7.7 \qquad \text{and}$ q_p (specific product formation rate) = 3.4 hr^{-1} .

Calculate the flow rate which is required for an outlet substrate concentration $s = 1.5 \text{ kg/m}^3$.

b) In a number of separate runs different concentrations of substrate and enzyme are introduced into a batch reactor and allowed to react. After a certain time the reaction is quenched and the vessel contents analyzed. From the results found below find a rate equation to represent the action of enzyme on substrate.

Run	C_{E0} (mol/m ³)	$C_{A0} \text{ (mol/m}^3\text{)}$	$C_A \pmod{m^3}$	t (hr)
1	3	400	10	1
2	2	200	5	1
3	1	20	1	1

7 + 8

- 10. a) What are the differences between plant cells & microbes & implication for bioreactor design?
 - b) The rule of thumb that the rate of reaction doubles for a 10° C increase in temperature occurs only at specific temperature for a given activation energy (*i.e.* for specific combination of temperature and activation energy). Show that the relationship between activation energy and temperature for which the rule holds is $T = [10(K). E/R. \ln^2]^{\frac{1}{2}}$.
 - c) Write short note on Fluidized Bed Reactor. 5 + 5 + 5

11. a) A stream of pure gaseous reactant A (C_{AO} m mol/L) enters a plug flow reactor at a flow rate of F_{AO} = 540 m mol/min and polymerizes there as follows:

 $3B \rightarrow R$, $-r_A = 54 \text{ m mole/(litre)(min)}$

How large a reactor is needed to lower the concentration of A in the exit stream to $C_{Af} = 330 \text{ m mol/L}$?

b) Enzyme *E* catalyses the fermentation of substrate *A* (the reactant) to product *R*. Find the size of mixed flow reactor needed for 95% conversion of reactant in a feed stream (25 litre/min) of reactant (2 mol/litre) and enzyme. The kinetics of the fermentation at this enzyme concentration are given by

A enzyme \rightarrow R, $-r_A = \frac{0 \cdot 1C_A}{1 + 0 \cdot 5C_A}$ mol/litre. min 8 + 7

=========