	Utech
Name:	
Roll No.:	In Spanish (V. Sampledge Staff Staffers)
Invigilator's Signature :	

CS / B.TECH (BT-NEW) / SEM-5 / BT-502 / 2010-11 2010-11

BIOREACTOR DESIGN & ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

	$10\times1=10$
i)	The unit of 1st order reaction when partial pressure will
	be used in place of concentration is

Choose the correct alternatives for any ten of the following:

a) atm^{-2}

1.

- b) $atm^{-2}time^{-1}$
- c) $time^{-1}atm^{-1}$
- d) $time^{-1}$.
- ii) For completely mixed system, the dimensionless variance, $6\theta^2$, for E-curve due to pulse input is
 - a) 0

- b) equal to 1
- c) less than 1
- d) infinity.

5109 [Turn over]

- iii) The volumetric mass transfer coefficient, RLa, is related to
 - a) oxygen transfer
 - b) mass transfer unit
 - c) packed bed absorption
 - d) diffusion rate.
- iv) Air lift fermenter may be designed on the basis of
 - a) plug flow
 - b) plug flow with dispersion
 - c) completely mixed system
 - d) segregated model.
- v) The growth curve of animal cell culture has no stationary phase due to
 - a) exhaustion of substrate
 - b) presence of inhibitors
 - c) production of toxic metabolites
 - d) foam formation.

- vi) Penicillin-G is best produced in a reacto of the type
 - a) CSTR with baffles
 - b) CSTR without baffles
 - c) fluidized bed
 - d) air lift fermenter.
- vii) The best choice of a reactor for the production of Monoclonal antibodies is
 - a) Microcarrier
 - b) Microencapsulation
 - c) Hollow fiber reactor
 - d) Tubular membrane reactor.
- viii) The most important scale-up criterion for an aerobic CSTR is
 - a) constant K_{la}
 - b) geometric similarity
 - c) hydrodynamic similarity
 - d) constant impeller based Reynolds member.

- ix) The design interior of a chemostat is
 - a) residence time
- b) dilution rate
- c) specific growth rate
- d) space time.
- x) Damköhler number is a measure of
 - a) molecular diffusion
 - b) biochemical reaction
 - c) pore diffusion
 - d) combination of (a) and (b).
- xi) Thiele modulus is a measure of
 - a) molecular diffusion
 - b) pore diffusion
 - c) chemical reaction
 - d) combination of (a) and (b).
- xii) Power number varies with impeller based Reynolds number, Re_I for turbulent flow
 - a) varies inversely
 - b) varies directly
 - c) independent of Re_I
 - d) varies asymptotically.

Answer any three of the following.

- 2. Milk is pasteurized if it is heated to 63°C for 30 minutes, but if it is heated to 74°C it only needs 15 s for the same result. Find the activation energy of this sterilization process.
- 3. Describe the operation of perfusion reactor.
- 4. Liquid A decomposes by second order kinetics and in a batch reactor. 50% of A is converted in a 5 minute run. How much longer would it take to reach 75% conversion?
- 5. Describe the operation of a bubble column bioreactor and develop a model if the oxygen transfer rate (kla) is the controlling one.
- 6. Distinguish between a chemostat and turbidostat. Derive a model for a chemostat for sterile feed in terms of D, X, $S \& \mu$.

Answer any *three* of the following. $3 \times 15 = 45$

- 7. A simple, batch fermentation of an aerobic bacterium growing on methanol gave the results shown in the table.

 Calculate:
 - a) Maximum growth rate (μ_{max})
 - b) Yield on substrate ($Y_{X/S}$)
 - c) Mass doubling time (t_d)
 - d) Saturation constant (K_S)
 - e) Specific growth rate ($\mu_{\textit{net}}$) at t = 10h

Time (hr)	0	2	4	8	10	12	14	16	18
X(g/1)	0.2	0.211	0.305	0.98	1.77	3.2	5.6	6.15	6.2
S(g/1)	9.23	9.21	9.07	8.03	6.8	4.6	0.92	0.077	0

5109 6

8. The elementary liquid-phase reaction

$$A + 2B \xrightarrow{k_1} R$$

$$-r_A = -1/2r_B = (12.5 \text{ liter}^2/\text{mol}^2.\text{Min}) C_A C_B^{-2} - (1.5 \text{ min}^{-1}) C_R$$
, [mol/liter.min]

is to take place in a 6-liter steady-state mixed flow reactor. Two feed streams, one containing 2.8 mol A/liter and the other containing 1.6 mol B/liter, are to be introduced at equal volumetric flow rates into the reactor, and 75% conversion of limiting component is desired. What should be the flow rate of each stream ? Assume a constant density throughout.

9. Write a short notes on

- a) Dispersion model
- b) Tank in series model

 $7\frac{1}{2} + 7\frac{1}{2}$

10. Substrate A and enzyme E flow through a mixed flow reactor (V=6 liter). From the entering and leaving concentrations and flow rate find a rate equation to represent the action of enzyme on substrate.

$$A..... \rightarrow 3R$$

$C_{E)}$ mol/liter	C_{A0} mol/liter	C_A mol/liter	v, lit/hr.
0.02	0.2	0.04	3.0
0.01	0.3	0.15	4.0
0.001	0.69	0.60	1.2

- 11. Write short notes on any three of the following:
 - a) Trickling filter for waste water treatment
 - b) Production of vaccine in a Roller bottle
 - c) Perfusion system for animal cell culture
 - d) Fluidized bed reactor for animal cell culture
 - e) Determination of K_{la} by the steady state method.

=========

5109 8