

CS/ B.TECH (BME-OLD)/ SEM-4/ EC-405/ 2012

 2012 DIGITAL ELECTRONICS CIRCUITTime Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

$$
10 \times 1=10
$$

i) The minimum no of NAND gates required to design one X -OR gate is
a) 4
b) 5
c) 7
d) 6 .
ii) The logic expression $A \bar{B}+\bar{A} B$ can be implemented by giving inputs $A \& B$ to a two input
a) NAND gate
b) X -OR gate
c) NOR gate
d) $\mathrm{X}-\mathrm{NOR}$ gate.

CS/B.TECH (BME-OLD)/SEM-4/EC-405/2012

b) bistable circuit
c) astable circuit.
iv) An example of reflected code is
a) BCD
b) ASCII
c) GRAY
d) Hamming.
v) The number of flip-flops required for a mod-16 ring counter are
a) 4
b) 8
c) 12
d) 16.
vi) The hexadecimal equivalent of the binary number 11101101111010 is
a) EDEB
b) 35572
c) FB 7 A
d) $3 B 7 \mathrm{~A}$.
vii) The code used in computer cards is
a) gray code
b) natural BCD code
c) ASCII code
d) 12-bit Hollerith code.
viii) If each successive code differs from its preceding code by a single bit only, then this code is called
a) BCD code
b) gray code
c) weighted code
d) binary code.

ix) For a binary half substractor with inputs $A \& B$, the correct logic expression for the output difference (D) and the borrow (X) are
a) $\quad D=A B+\bar{A} B ; \quad X=\bar{A} B$
b) $D=\bar{A} B+A \bar{B} ; \quad X=A \bar{B}$
c) $D=\bar{A} B+A \bar{B} ; \quad X=\bar{A} B$
d) $D=A B+\bar{A} B ; \quad X=A \bar{B}$.
x) The characteristic equation of T flip-flop is given by
a) $Q^{+}=\bar{T} Q+T \bar{Q}$
b) $Q^{+}=T Q+T Q$
c) $Q^{+}=T \bar{Q}$
d) $\quad Q^{+}=T Q$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $\quad 3 \times 5=15$
2. Draw and explain the construction of 2 input NAND gate with tristate logic of TTL logic family.
3. Simplify the following expression using the Karnaugh map.
$X=B \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+A B \bar{C} D+\bar{A} B C D+A B C D$.
4. What is Race around problem in flip-flops ? How can it be avoided ?
5. What are minterms ? Simplify the expression by Boolean algebra

$$
F=A B+\bar{A} C+A \bar{B} C(A B+C) . \quad 2+3
$$

6. Construct a full subtractor with the use of multiplexer.

CS/B.TECH (BME-OLD)/SEM-4/EC-405/2012

7. What are governing parameters to describe the specification of an A / D converter ? Which is the fastest type of A / D converter ? Describe the operation of Successive Approximation type A/D converter. $3+2+10$
8. a) Realise a JK flip-flop (clocked type) with NAND gates.
b) Realise the following counter by D Flip-flop.

$$
\rightarrow 0 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 7
$$

9. Write short notes on any three of the following :
a) Sequential circuit
b) CMOS TTL interfacing
c) Demultiplexer
d) Asynchronous state machine.
10. a) Explain the principle of operation of a parallel in serial out shift register with block diagram.
b) Design a 4-bit Bidirectional shift register.
c) Write down the application of shift register. $6+6+3$
11. Explain the operation of a 4-bit Up-Down counter with its timing digram.
