

CS/B.TECH(BME)/SEM-4/EC-405/2010 2010 DIGITAL ELECTRONICS CIRCUIT

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

$$
10 \times 1=10
$$

i) Which of the following is a weighted code ?
a) Excess-3
b) Gray
c) 8421
d) None of these.
ii) The octal equivalent of (444.456) ${ }_{10}$ is
a) 674.735
b) 673.5136
c) 674.35136
d) None of these
iii) The decimal equivalent of $(1110.11)_{2}$ is
a) $\quad 15.75$
b) $\quad 14.75$
c) $\quad 13.33$
d) $\quad 14.33$.

CS/B.TECH(BME)/SEM-4/EC-405/2010
iv) The Gray code of (110101 $)_{2}$ is
a) 101111
c) 111010
d) 101011 .
b) $100110 \sim$ grationsin
v) The output (Y) of an XNOR gate with inputs A and B is expressed as
a) $Y=A^{\prime} B+A B^{\prime}$
b) $Y=A+A^{\prime} B$
c) $Y=B+A^{\prime} B$
d) $Y=A B+A^{\prime} B^{\prime}$.
vi) A decoder with enable input can be used as
a) multiplexer
b) encoder
c) parity generator
d) demultiplexer.
vii) The resolution of an 8 -bit A/D converter is
a) 0.62%
b) 0.38%
c) 1.25%
d) 0.39%.
viii) The memory, which is ultraviolet erasable and electrically programmable is
a) PROM
b) EEROM
c) ROM
d) EPROM.
ix) A ring counter with 5 flip-flops will have
a) 5 states
b) 32 states
c) 10 states
d) none of these.
x) The flip-flop, free from race around problem is
a) J-K flip-flop
b) Master-slave J-K flip-flop
c) R-S flip-flop
d) none of these.

2. Obtain the minimal SOP expression for the following function and implement the same using only NAND gates :

$$
F(A, B, C, D)=\Sigma(1,4,7,8,9,11)+\Sigma \mathrm{d}(0,3,5) .
$$

$$
2+3
$$

3. What is the difference between combinational \& sequential circuits ? Implement a full adder with a decoder. $2+3$
4. What is Boolean algebra ? What are the basic laws of Boolean algebra?
Simplify the expression :

$$
\begin{array}{r}
A(A+B+C)\left(A^{\prime}+B+C\right)\left(A+B^{\prime}+C\right)\left(A+B+C^{\prime}\right) \\
1+2+2
\end{array}
$$

5. Explain the race around condition. Realise an XOR gate with the minimum number of NAND gates.
$2+3$
6. What is the pulse triggered flip-flop ? Which has the most advantages - pulse triggered or edge triggered and why ?
$2+3$

GROUP - C

(Long Answer Type Guestions)

Answer any three of the following. $3 \times 15=45$
7. What is a multiplexer ?

What is the function of a multiplexer's select line?
Explain the difference between a DEMUX and MUX.
Design a 32 to 1 MUX using 8 to 1 Multiplexer.
State the application of MUX.

$$
1+2+2+8+2
$$

CS /B.TECH(BME)/SEM-4/EC-405/2010
8. What is the function of a Decoder's Enable Input ? Show that a Decoder with an Enable Input ean function as a Demultiplexer.

What is meant by Edge Triggering?
Give the difference between positive and negative edge triggerings.

Show how the JK Flip-flop can be operated as a Toggle Flipflop.

What advantages does a JK Flip-flop have over an SR Flipflop. $2+4+1+2+4+2$
9. What is a Ripple Counter ?

Explain the difference between the performance of asynchronous and synchronous counters.

What are the primary disadvantages of an asynchronous counter?

Draw the logic diagram of the 4 -bit binary ripple counter.
Design a mod- 6 counter .
$1+2+2+5+5$
10. What are the differences between Mealy Machine and Moore Machine?

Write the definition of Finite State Machine.
What are the Glitches ?
How Glitches can be avoided using Clock suppression?

$$
3+2+2+8
$$

11. Write short notes on any three of the following :
a) TTL NAND gate
b) Ring counter
c) Gray code
d) PLA.
