
Abstract

Name : Roll No. : \qquad Invigilator's Signature : \qquad

CS/B.TECH/AUE(N)/SEM-5/AUE-502/2012-13 2012

HEAT TRANSFER
Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) Up to the critical radius of insulation
a) added insulation will increase heat loss
b) added insulation will decrease heat loss
c) convection heat loss will be less than conduction heat flux
d) heat flux will decrease.
ii) According to reciprocity theorem
a) $A_{1} F_{12}=A_{2} F_{21}$
b) $\quad A_{2} F_{12}=A_{1} F_{21}$
c) $\quad A_{1} F_{21}=A_{2} F_{12}$
d) all of these.

CS/B.TECH/AUE(N)/SEM-5/AUE-502/2012-13

iii) The ratio of heat flow Q_{1} / Q_{2} from two wallseof same thickness having thermal conductivity $-K_{1}^{2} \equiv 2 K_{2}$ for the same temperature difference will be
a) 1.0
b) $2 \cdot 0$
c) 0.5
d) $\quad 4.0$.
iv) Addition of fin to the surface increases the heat transfer if $\sqrt{\frac{h A}{K_{P}}}$ is
a) equal to one
b) greater than one
c) less than one
d) greater than one but less than two.
v) For gases Prandtl Number is
a) near unity
b) between 5 and 50
c) between 60 and 100
d) between 150 and 300 .
vi) In free convection, motion of the fluid is caused
a) by the weight of the fluid element
b) by the hydrostatic force on the element
c) by the buoyancy force arising from density of fluid with the temperature
d) none of these.

CS/B.TECH/AUE(N)/SEM-5/AUE-502F2012-13 viech
 vii) A surface for which emissivity is constant at all temperatures and throughout the entire range of wavelength is called

a) opaque
b) gray
c) specular
d) diathermanous.
viii) For flow over a flat plat $\operatorname{Pr}>1$, the thermal boundary layer for laminar forced convection
a) is thinner than the hydrodynamic boundary layer
b) has a thickness equal to zero
c) is of same thickness as hydrodynamic boundary layer
d) is thicker than the hydrodynamic boundary layer.
ix) Consider two infinitely long black body concentric cylinder with diameter ratio $\frac{D_{2}}{D_{1}}=3$. The shape factor for the outer cylinder with itself will be
a) 0
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) 1 .

CS/B.TECH/AUE(N)/SEM-5/AUE-502/2012-13
x) For steady heat flow, constant thermal conductivity and in absence of heat generation the temperature distribution for plane wall is
a) parabolic
b) hyperbolic
c) cubic
d) linear.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following $\quad 3 \times 5=15$
2. What is critical thickness of insulation ? Derive critical radius of insulation in case of sphere.
$1+4$
3. Define and explain the two of the following: $2 \times 2 \frac{1}{2}$
a) Reynolds number
b) Eckert number
c) Weber number.
4. What is the significance of Biot number of Fourier number ?
5. A plane wall (thermal conductivity $=10 \cdot 2 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$) for 100 mm thickness and area $3 \mathrm{~m}^{2}$ has steady surface temperature of $170^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Determine
i) the rate of heat flow across the plane wall
ii) the temperature gradient in the flow direction.
6. Show from energy balance consideration that the radiation heat transfer from a plane composite surface area A_{4} and made up of plane surface areas A_{2} and A_{3} to a plane surface area A_{1} is given by $A_{4} F_{41}=A_{3} F_{31}+A_{2} F_{21}$ and $F_{14}=F_{12}+F_{13}$.

7. a) Derive the general heat conduction equation in Cartesian coordinates. Under what condition does this get reduce to Poisson equation, Laplace equation and Fourier equation ?
b) The inner surface $r=a$ and the outer surface at $r=b$ of a cylinder (length of cylinder $=L$) are maintained at uniform temperature T_{1} and T_{2} respectively. The thermal conductivity K of the solid is constant.
i) Develop an expression for the 1-dimensional, steady state temperature distribution $T(r)$ in the cylinder
ii) Develop an expression for the radial heat flow rate Q through the cylinder
iii) Develop an expression for the thermal resistance of the cylinder.
$(6+3)+6$
8. a) Using lumped parameter analysis method derive the following relation with usual notations :
$\frac{t-t_{a}}{t_{1}-t_{a}}=e^{-B i \times F o}$

CS/B.TECH/AUE(N)/SEM-5/AUE-502/2012-13
b) An egg with mean diameter of 40 mm and initially at $20^{\circ} \mathrm{C}$ is placed in a boiling water pan for 4 minutes and found to be boiled to the consumer taste. For how long should a similar egg for same consumer be boiled when taken from a refrigerator at $5^{\circ} \mathrm{C}$? Take the following properties for egg :
$k=10 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \rho=1200 \mathrm{~kg} / \mathrm{m}^{3}, c=2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ and h (heat transfer coefficient) $=100 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. Use lump theory.
9. a) What is Couette flow ? Deduce an expression for temperature distribution when the upper and lower plates are different.
b) Given $N u_{x}=\frac{h(x) x}{k}=0.332 \operatorname{Pr}^{\frac{1}{3}} \operatorname{Re}_{x}^{\frac{1}{2}}$

Develop a relation average $h(x)$ for $0 \leq x \leq L$
Atmospheric air at $T_{\infty}=400 \mathrm{~K}$ with a velocity $u_{\infty}=1.5 \mathrm{~m} / \mathrm{s}$ flows over a flat plate $L=2 \mathrm{~cm}$ long maintained at a uniform temperature $T_{w}=300 \mathrm{~K}$.

Calculate average $h(x)$ that is h_{m} for $0 \leq x \leq L$. Calculate the heat transfer rate for width $w=0.5 \mathrm{~m}$.

Thermodynamic properties of air at 350 K

ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	C_{p} $(\mathrm{~kJ} / \mathrm{kgK})$	$\mu \times 10^{7}$ $\left(\mathrm{Ns} / \mathrm{m}^{2}\right)$	$v \times 10^{6}$ $\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	$k \times 10^{3}$ $(\mathrm{~W} / \mathrm{mK})$	$\alpha \times 10^{6}$ $\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	P_{r}
0.9950	1.009	208.2	20.92	30	29.9	0.700

10. a) Show that the emissive power of a black body is π times the intensity of emitted radiation.
b) By using one radiation shield between two surfaces and if all the three surfaces have the same emissivity, show that the net radiant heat transfer is reducing by 50%.
c) Consider two large parallel plates one at $t_{1}=727^{\circ} \mathrm{C}$ with emissivity $\varepsilon_{1}=0.8$ and other at $t_{2}=227^{\circ} \mathrm{C}$ with emissivity $\varepsilon_{2}=0.4$. An aluminium radiation shield with an emissivity, $\varepsilon_{3}=0.05$ on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield. Use $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$.

$$
4+4+7
$$

