
 Name :
 Roll No.
 \qquad 5R-m Invigilator's Signature :
 \qquad
 CS/B.Tech (AUE)/SEM-4/AUE-402/2011 2011 HEAT TRANSFER AND COMBUSTION

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) LMDT in case of parallel flow as compared to counterflow heat exchanger is
a) higher
b) lower
c) same
d) dependent on temperature distribution.
ii) A composite plane wall is made of two different materials of same thickness with thermal conductivities k_{1} and k_{2}. The equivalent thermal conductivity of the slab is
a) $k_{1}+k_{2}$
b) $\quad k_{1} k_{2}$
c) $\quad\left(k_{1}+k_{2}\right) / k_{1} k_{2}$
d) $2 k_{1} k_{2} /\left(k_{1}+k_{2}\right)$.
iii) The critical radius of insulation for a sphere is equal to
a) $2 k h$
b)
$2 k / h$
c) $h / 2 k$
d) k / h.
iv) The rate of radial heat transfer through a hollow cylinder increases as the ratio of outer radius to inner radius
a) decreases
b) increases
c) remains same
d) unpredictable.
v) The unit of the thermal diffusivity is
a) $\mathrm{m}^{2} / \mathrm{hr}{ }^{\circ} \mathrm{C}$
b) $\mathrm{kcal} / \mathrm{hr}^{\circ} \mathrm{C}$
c) $\mathrm{m}^{2} / \mathrm{s}$
d) $\quad \mathrm{m} / \mathrm{s}^{2}$.
vi) A non-dimensional number not associated with natural convection is
a) Reynolds number
b) Nusselt number
c) Grashof number
d) Prandtl number.
vii) The statement of reciprocity theorem is
a) $\quad F_{12}=F_{21}$
b) $\quad A_{1} F_{12}=A_{2} F_{21}$
c) $\quad A_{2} F_{12}=A_{1} F_{21}$
d) All of these.
viii) For a white body transmissivity is equal to
a) reflectivity
b) one
c) constant
d) zero.
ix) All grey bodies obey the
a) Kirchhoff's law
b) Stefan-Boltzman law
c) Fourier's law
d) Wien's law.
x) Nusselt number is given by
a) $\mu C_{p} / k$
b) $\quad \mu k / C_{p}$
c) $h L / k$
d) $\quad h k / L$.

2. Derive an expression for heat flow in radial direction for a hollow cylinder (inside radius r_{i} and outside radius r_{o}) of length L and uniform thermal conductivity k under steady state and without any heat generation. The inner and outer surface temperatures of the cylinder are T_{i} and T_{o} respectively.
3. Calculate overall heat transfer coefficient of a cylinder when heat is flowing from inside to outside direction.
4. What is shape factor ? Write the various features of shape factor.
5. What do you mean by logarithmic mean area and geometric mean area?
6. a) Explain the term 'critical radius of insulation'.
b) Derive an expression for critical radius of insulation for the case of sphere.

GROUP - C
 (Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
7. a) Derive the general three dimensional differential equation of heat conduction with internal heat generation for a rectangular coordinate system. 8
b) A wall of 0.5 m thickness is to be constructed from a material which has an average thermal conductivity of $1.4 \mathrm{~W} / \mathrm{mK}$. The wall is to be insulated with a material having an average thermal conductivity of $0.35 \mathrm{~W} / \mathrm{mK}$ so that the heat loss per square metre will not exceed 1450 W. Assume that the inner and outer surface temperatures are $1200^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ respectively. Calculate the thickness of insulation required.

CS / B.Tech (AUE)/SEM-4/AUE-402 /2011

8. a) Derive an expression for heat flow in radial direction and maximum temperature for a solid sphereof radius R and, uniform thermal conductivity k under steady state and with internal heat generation $q /$ unit volume. The outer surface temperature of the cylinder is T_{w} and atmospheric temperature is T_{a}. 7
b) A hollow sphere with ID 10 cm is made up of two materials; first with steel ($k=70 \mathrm{~W} / \mathrm{mK}$) and second with iron ($k=15 \mathrm{~W} / \mathrm{mK}$). Steel layer is 10 cm thick and iron layer is 5 cm thick. The inside and outside surface temperatures are $300^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ respectively. Calculate the rate of heat flow and temperature between two layers.

8
9. a) Derive an expression for heat flow in a very long fin. 8
b) One end of a very long steel rod is maintained at $1400^{\circ} \mathrm{C}$ while the other end is into a fluid with temperature $15^{\circ} \mathrm{C}$. The diameter of the rod is 3 mm and the thermal conductivity of the rod material is 240 W / mK. If the heat transfer co-efficient between the rod surface and fluid is $400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, determine the heat dissipation rate of the fin.
10. a) Derive an expression for log mean temperature difference (LMTD) in case of parallel flow heat exchanger.
b) Hot oil with a capacity rate of $2500 \mathrm{~W} / \mathrm{K}$ flows through a double pipe heat exchanger. It enters at $360^{\circ} \mathrm{C}$ and leaves at $300^{\circ} \mathrm{C}$. Cold fluid enters at $30^{\circ} \mathrm{C}$ and leaves at 200° C. If the overall heat transfer coefficient is $800 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, determine the heat exchanger area required for
i) parallel flow
ii) counter flow.
11. a) What is intensity of radiation ? Prove that total emissive power of a diffuse surface is equal to π times its intensity of radiation.
b) What is the difference between natural convection and forced convection?

