Name :	Utech
Roll No.:	
Inviailator's Sianature :	

CS/B.Tech (AUE)/SEM-4/AUE-401/2011 2011

ENGINEERING ANALYSIS & NUMERICAL METHODS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - Which of the following is not true (the notations have their usual meaning)?

a)
$$\Delta = E - 1$$

b)
$$\Delta \cdot \nabla = \Delta - \nabla$$

c)
$$\frac{\Delta}{\nabla} = \Delta + \nabla$$

d)
$$\nabla = 1 - E^{-1}$$
.

- If the interval of differencing is unity and $f(x) = ax^2$ ii) (a is a constant), find which one of the following is wrong?
 - $\Delta f(x) = a(2x + 1)$ b) $\Delta^2 f(x) = 2a$
- $\Delta^3 f(x) = 2 \qquad \text{d)} \qquad \Delta^4 f(x) = 0.$
- The value of $\Delta^{n+1} x^{(n)}$ is iii)
 - a) n !

b) 0

c) n d) none of these.

4019

CS/B.Tech (AUE)/SEM-4/AUE-401/2011

c)

2

GROUP – B (Short Answer Type Questions)

Answer any *three* of the following. 3

- 3. Obtain the Newton-Raphson formula for finding the mth root of positive no. a and hence show that for the cube root of a (> 0) is $x_{n+1} = \frac{2x_n^3 + a}{3 \cdot x_n^2}$.
- 4. Solve by Gauss-elimination method

$$2x - y + 3z = 4$$
$$x + z = 2$$
$$2y + z = 3.$$

- 5. Solve $\frac{dy}{dx} = x + y$ with y(0) = 1, xt[0, 1] by Taylor's series method to obtain y for x = 0.1.
- 6. Evaluate $\int_{0}^{1} x \cdot e^{x} dx$, using Trapezoidal rule taking n = 6.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Solve $x^2 + y^2 = 11$ and $y^2 + x = 7$, near x = 3 and y = -2 by Newton-Raphson method, correct to 3 decimal places.
 - b) Find a positive root of $x^3 + x^2 1 = 0$ by the iterative method, correct to 4 decimal places. 8 + 7

CS/B.Tech (AUE)/SEM-4/AUE-401/2011

- 8. a) Solve by Gauss-Jordan method 10x + y + z x + 10y + z = 12, x + y + 10z = 12.
 - b) Find the inverse of the matrix by Gauss-Jordan method:

$$\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

9. a) Find the largest eigenvalue and corresponding eigenvector of the matrix by power method.

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

b) Find a cubic polynomial which takes the following data, by Newton's forward interpolation. Hence find f(0.5):

<i>x</i> :	0	1	2	3
f(x):	1	0	1	10
				0 , 7

- 8 + 7
- 10. a) Compute $f'(1\cdot 1)$ and $f''(1\cdot 1)$ from the following table :

<i>x</i> :	1.1	1.2	1.3	1.4	1.5
f(x):	2.0091	2.0333	2.0692	2.1143	2.1667

b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rule, taking

$$h = \frac{1}{6}$$
. Hence calculate the value of λ . 8 +

11. a) Use 4th order Runge-Kutta method to find y (0.1) and y (0.2), correct to 4 decimal places when $\frac{\mathrm{d}y}{\mathrm{d}x} = y - x$, y (0) = 2.

4

b) Using Lagrange's polynomial find y (10) if

<i>x</i> :	5	6	9	11
<i>y</i> :	12	13	14	16

8 + 7

4019