

CS/B.Pharm (New)/SEM-4/PT-407/2010 2010

PHARMACEUTICAL ENGINEERING
Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Constant boiling solutions are completely separated by
a) Fractional distillation
b) Azeotropic distillation
c) Distillation under reduced pressure
d) Simple distillation.
ii) Volatile oil separated from crude drugs by
a) Vacuum distillation
b) steam distillation
c) simple distillation
d) none of these.

CS /B.Pharm (New)/SEM-4/PT-407/2010
iii) In the sieving method, the powder is passed through a set of sieves which are arranged
a) in descending order
b) in ascending order
c) at random
d) one's own choice.
iv) The equipment suitable for mixing of free flowing solids is
a) planetary mixer
b) sigma blender
c) $\quad V$-cone blender
d) none of these.
v) The output of size reduction of material in a machine depends on
a) Bulk density
b) Material structure
c) Ratio of feed size to product size
d) Chemical nature. screen
a) 240
b) 200
c) 150
d) all of these.
vii) A roller mill is used mainly to reduce particle size in
a) tablet granulation
b) ointments
c) emulsions
d) bulk powders.
viii) Which of the following is true for black body radiation?
a) $\quad \alpha=1, \varepsilon=1$
b) $\quad \alpha=1, \varepsilon<1$
c) $\alpha<1, \varepsilon<1$
d) none of these.
ix) The three dimensional arrangement of particles in a crystal is called
a) crystal lattice
b) space lattice
c) faces
d) none of these.
[Turn over

CS/B.Pharm (New)/SEM-4/PT-407/2010
x) 'Magma' is a term related to

a) mixing
b) distillation
c) crystallization
d) evaporation.
xi) The power number (N_{P}) of an impeller is determined by
a) fifth power of the impeller's diameter
b) fourth power of the impeller's diameter
c) third power of the impeller's diameter
d) none of these.
xii) Stoke's diameter is
a) directly proportional to the viscosity of medium
b) directly proportional to the square root of viscosity of medium
c) inversely proportional to the square of viscosity of medium
d) none of these.

2. State Rittinger's and Kick's law for size reduction.
3. What should be the diameter of a set of rolls to take feed of a size equivalent to 1.5 inch spheres and crush to 0.5 inch, if co-efficient of friction is $0 \cdot 35$?
4. Write short note on finned tube heat exchanger.
5. Distinguish between evaporation, distillation and crystallisation.
6. What is caking of crystals ? List the factors affecting and preventive measures for caking. $2+3$

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. a) What do you mean by angle of nip ? Prove that for crushing roll, if the angle of nip is 2α and the co-efficient of friction is μ, then $\mu>\tan \alpha$ for efficient crushing.
b) What is critical speed of a ball mill? Show that critical speed of a ball mill $=\frac{1}{2 \pi} \sqrt{\frac{g}{R-r}}$, where R and r are the radii of mill and ball respectively.
$7+8$

CS /B.Pharm (New)/SEM-4/PT-407/2010
8. a) What do you mean by crystallization? How does it differ from precipitation?

b) What are the pharmaceutical application of crystallization ?
c) Discuss the Mier's super saturation theory of crystallization. What are the limitations of the Mier's theory?
$2+3+10$
9. a) What do you mean by vortex formation? What problems may arise due to vortex formation ? How do you overcome such problems ?
b) What is the importance of mixing index ? Derive the equation to calculate mixing index. $8+7$
10. a) Classify different types of evaporators.
b) Discuss the factors effecting the rate of evaporation.
c) What do you mean by 'Economy of a multiple effect evaporator? $4+8+3$

11. a) Explain Stefen-Boltzmann law of Black Body Radiation and define Stefen-Boltzmann constant from the faw. Define Kirchhoff's law.
$2 \frac{1}{2}+1 \frac{1}{2}+1$
b) Write units with magnitudes of Stefen-Boltzmann constant in F.P.S. and S.I. system. $1+1$
c) Define gray body and Stefen's law of radiation exchange of two black bodies of temperatures T_{1} and T_{2} respectively $\left[T_{1}>T_{2}\right] . \quad 2+2$
d) Two radiating surfaces (A and B) are of temperature $212^{\circ} \mathrm{F}$ and $1000^{\circ} \mathrm{F}$ respectively. If the temperature of B is raised to $1200^{\circ} \mathrm{F}$, find the percentage increase of radiation.

