	Unech
Name:	
Roll No.:	In Agency (I' Knowledge Stad Excision)
Invigilator's Signature :	

ADVANCED MATHEMATICS & ENGINEERING MECHANICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) The Arithmetic Mean of the numbers

1, 3, 5,,
$$2 n - 1 is$$

a) n-1

b) n

c) $\frac{n^2}{2}$

- d) none of these.
- ii) The number 1.99555 when rounded off to 4 decimal places becomes
 - a) 1.9955
- b) 1.9956

- c) 1.9954
- d) none of these.

2059 [Turn over

- a) semi-logarithmic
- b) logarithmic

c) line

d) pie diagram.

iv) Median of the series 4, 6, 9, 4, 2, 8, 10 is

a) 4

b) 9

c) 6

d) none of these.

v) Coefficient of variation (C.V.) is the best measure of

- a) central tendency
- b) dispersion
- c) relative dispersion
- d) none of these.

vi) If $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{2}$, then

P(A/B) is

a) $\frac{1}{2}$

b) $\frac{1}{6}$

c) $\frac{2}{3}$

d) $\frac{5}{6}$.

vii) The statement

"Mean of a binomial distribution = its standard deviation = 2"

is,

a) False

b) True.

2059

viii) Laplace Transform of $\left(1-e^{t}\right)/t$ is equal to

- a) $\log (s-1)/s$
- b) $\log (s / s 1)$
- c) $s^{2/(s-1)}$
- d (s+1)/s.
- ix) The inverse Laplace Transform of $\frac{1}{s^2(s^2+1)}$ is,
 - a) t

b) $1 - \cos t$

- c) $t \sin t$
- d) none of these.
- x) Lami's theorem is deduced from
 - a) triangle of forces
- b) polygon of forces
- c) equilibrium of force
- d) none of these.
- xi) A particle of mass m is allowed to fall from rest at any height h above the ground. Then the sum of its kinetic energy and potential energy, throughout the motion is
 - a) 0

b) mg

c) mgh

d) none of these.

2059

3

[Turn over

- xii) Two perpendicular forces of equal magnitude will have resultant equal to
 - a) 2 P

b) 3 P

c) √2 *P*

- d) none of these.
- xiii) When a body is in limiting equilibrium on a rough inclined plane, μ being the coefficient of friction and R the normal pressure on the body, then the maximum amount of friction generated at the point of contact is
 - a) $\mu + R$

b) μR^2

c) μR

d) none of these.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Draw an appropriate Pie-diagram for the following data:

Production of tea in different countries:

Country	Production (Tons)			
India	405			
Sri Lanka	225			
Japan	85			
Indonesia	40			
Other countries	275			
Total	1030			

2059 4

3. The probability density function f(x) of a random variable X is given as follows:

$$f(x) = 2x$$
, $0 < x < 1$
= 0, otherwise
find $P\left(\frac{1}{4} < X < \frac{1}{2}\right)$

- 4. Evaluate $L \left\{ e^{2t} \cos t \sin t \right\}$.
- 5. Find centre of gravity of a homogeneous solid hemisphere of radius 'a'.
- 6. A stone dropped into a well touches water with a velocity of 19.60 m/sec and the sound of striking water is heard in 2.50 sec after it is let fall. Find the velocity of sound. ($g = 9.80 \text{ m/sec}^2$).

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) The following table shows monthly wage distribution of 130 workers in a factory. Obtain the mode of the distribution:

Monthly wage (in Rs.)	No. of workers		
1500 - 1700	25		

$$1700 - 1900$$
 30 $1900 - 2100$ 37

$$2100 - 2300$$
 27

$$2300 - 2500$$
 11

2059 5 [Turn over

8. a) Find a suitable measure of the coefficient of skewness for the following distribution:

Variable	0 - 20	20 - 50	50 - 100	100 - 250	250 - 500	500 - 1000
Frequency	20	50	69	30	25	19

b) Fit a straight line to the following data:

Year	1951	1961	1971	1981	1991
Productivity (in thousand tons)	8	10	12	10	16

8

7

Also find the expected production in 1996.

9. a) Find
$$L^{-1}$$
 $\left\{ \frac{6s-4}{s^2-4s+20} \right\}$

b) Using Laplace transform method solve the ordinary differential equation :

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 2\frac{\mathrm{d}x}{\mathrm{d}t} + x = e^t$$

with initial conditions x(0) = 2, x'(0) = -1.

2059 6

10. a) A uniform ladder rests in limiting equilibrium with one end against a rough vertical wall and other end on a rough horizontal plane having angle of friction λ_1 and λ_2 respectively. Show that inclination " θ " of the ladder to the horizon is given by

$$\theta = \tan^{-1} \left[\left\{ \cos \left(\lambda_1 + \lambda_2 \right) \right\} / 2 \sin \lambda_1 \cdot \cos \lambda_2 \right] \qquad 8$$

- b) Forces P, Q, R acting at a point are in equilibrium. If the angle between P and Q be double of the angle between P and R, then prove that $R^2 = Q(Q P)$.
- 11. a) If a bomb dropped from an aeroplane rising vertically with uniform velocity, reaches the ground in 5 seconds. Find the height of the aeroplane when the bomb reaches the ground.
 - b) A rocket ascending vertically from the ground with an initial velocity $\sqrt{2gy}$ ft/sec explodes when it reaches the greatest height, and the interval between the sound reaching the place of starting and a place distant x ft from it, is $\frac{1}{n}$ th of a second. Show that the velocity of sound is $n\left(\sqrt{x^2+y^2}-y\right)$ ft/sec.

2059 7 [Turn over