
 Name:
 Roll No.
 \qquad N viech Invigilator's Signature :
 \qquad
 CS/BBA(H)/BIRM/BSCM/SEM-2/BBA-203/2010 2010 STATISTICS - II

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) If x and y are random variables with expectation 3 and 5 respectively, then expectation of $3 x-5 y+16$ is
a) 16
b) -16
c) 2
d) 0 .
ii) Probability of the sample space is
a) 1
b) $\frac{1}{2}$
c) 0
d) none of these.
iii) If A and B are two events such that $P(A)=0 \cdot 4$, $P(A \cup B)=0 \cdot 7$ and A and B are independent, then $P(B)$ is
a) $0 \cdot 2$
b) $0 \cdot 3$
c) $0 \cdot 4$
d) 0.5 .
iv) If A and B are events with $P(A+B)=\frac{3}{4} \quad P\left(A+\frac{2}{3}\right.$ and $P(A B)=\frac{1}{4}$ then find $P(A)$
a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) $\frac{1}{4}$
d) none of these.
v) If the population size is 100 , sample size is 4 and S.D. is 16 , then the standard error of the sample mean in SRSWR is
a) 8
b) 2
c) 0
d) 1 .
vi) The variance of binomial distribution is
a) $n p$
b) $n p q$
c) $\quad n p q^{2}$
d) $n p^{2} q$.
vii) A box contains 6 white and 4 red balls. One ball is drawn at random, probability that it is white, is
a) $\frac{1}{5}$
b) $\frac{2}{5}$
c) $\frac{1}{2}$
d) $\frac{3}{5}$.
viii) If 5 coins are tossed simultaneously, the total number of possible outcomes is
a) 10
b) 32
c) 5
d) 16 .
ix) $E(X)$ of the probability distribution

$\boldsymbol{X}:$	1	2	3	4	5	6
$\boldsymbol{P}(\boldsymbol{x}):$	0.05	0.43	0.27	0.12	0.09	0.04

is given by
a) $2 \cdot 8$
b) $1 \cdot 6$
c) 5
d) $7 \cdot 9$.
x) If two cards are drawn from a well shuffled pack of 52 cards. The probability that both the cards are of same colour is
a) $\frac{1}{4}$
b) $\frac{3}{4}$
c) 1
d) none of these.
xi) When two perfect coins are tossed simultaneously, the probability of getting at least one head is
a) $\frac{1}{2}$
b) 0
c) $\frac{3}{4}$
d) none of these.
xii) The condition of binomial distribution is
a) trials are dependent
b) trials are independent
c) trials are equal
d) none of these.
xiii) The expectation of a random variable cannot be negative. It is
a) true
b) false
c) partially true
d) none of these.

CS /BBA(H)/BIRM/BSCM/SEM-2 /BBA-203 / 2010

xiv) For a binomial distribution, if $n=4, p=\frac{1}{3}$, then variance is

a) $\frac{2}{9}$
b) $\frac{4}{3}$
c) $\frac{8}{9}$
d) $\frac{2}{3}$.
xv) A discrete random variable X follows uniform distribution and takes only the values $6,8,11,12,17$. The probability of $p(x=8)$ is
a) $\frac{2}{3}$
b) $\frac{1}{5}$
c) 0
d) $\frac{8}{5}$.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. Given that $P(A)=\frac{5}{8}, P(B)=\frac{5}{8}$, and $P(A \cup B)=\frac{3}{4}$, find $P(A / B)$ and $P(B / A)$. Also show whether A and B are independent.
3. From a bag containing 4 white and 6 red balls, different balls are drawn at random. Find the expected number of white balls drawn.
4. Using the formulae for binomial distribution, find the probability of rolling at most 2 sixes in 5 rolls of a dice.
5. An office switchboard receives telephone calls at the rate of 3 calls per minute on average. What is the probability of receiving no calls in one minute interval ? Given ($e^{-3}=0.4979$)
6. If $y=a x+b$ where a and b are constants, prove that $E(y)=a \cdot E(x)+b$.

> GROUP - C
> (Long Answer Type Questions)
> Answer any three of the following.
7. a) If A and B are independent events, then prove that
i) \bar{A} and B are also independent,
ii) \bar{A} and \bar{B} are also independent. $2+3$
b) Define probability mass function and probability density function for discrete and continuous random variables respectively.
c) The diameter of an electric cable, say, X is assumed to be a continuous random variable with p.d.f. $f(x)=6 x(1-x), 0 \leq x \leq 1$.
i) Check that $f(x)$ is p.d.f.
ii) Determine a number b such that

$$
\begin{equation*}
P(X<b)=P(X>b) . \tag{6}
\end{equation*}
$$

CS /BBA(H)/BIRM/BSCM/SEM-2 /BBA-203 / 2010
8. a) A random variable X has the following probability distribution :

Value of $\boldsymbol{X}, \boldsymbol{x}$	0	1	2	3	4	5	6	7	8
$\boldsymbol{p}(\boldsymbol{x})$	k	$3 k$	$5 k$	$7 k$	$9 k$	$11 k$	$13 k$	$15 k$	$17 k$

i) Determine k.
ii) Find $P(X>3), P(X \geq 3)$.
b) A die is thrown 60 times with the following results :

Face :	1	2	3	4	5	6	Total
Frequency :	6	10	8	13	11	12	60

Are the data consistent with the hypothesis that the die is unbiased ?
$\left\{\right.$ Given $\chi^{2}=11 \cdot 07$ for $\left.5 d . f.\right\}$
9. a) State and prove Bayes' theorem.
b) Two identical boxes contain 5 white, 7 red balls and 5 white, 5 red balls respectively. One box is chosen at random and a ball is drawn from it. If the ball drawn is found to be white, calculate the probability that it is drawn from the first box.
c) If A and B are independent events and $P(A)=\frac{2}{3}$, $P(B)=\frac{3}{5}$, find $P(A+B), P\left(A^{c} / B\right)$ and $P\left(A^{c} B\right)$.

10. a) Deduce the mean and variance of Poisson Distribution.
b) The mean I.Q. of a group of children is 90 with a standard deviation of 20. Assuming I.Q. is normally distributed, find the percentage of children with I.Q. over 100. Given $\phi(0 \cdot 5)=0 \cdot 6915$.
11. a) A population consists of 4 members 3, 7, 11, 15. Consider all possible distinct samples of size 2 which can be drawn with replacement. Find :
i) Population mean,
ii) Population S.D.,
iii) Mean of the sampling distribution of means.
b) The probability that Asok can solve a problem is $\frac{4}{5}$, that Amal can solve is $\frac{2}{3}$ and that Abdul can solve is $\frac{3}{7}$. If all of them try independently, find the probability that the problem will be solved.

