	Utech
Name:	
Roll No.:	To Orange Samuely and Explana
Invigilator's Signature :	

CS/B.ARCH/SEM-1/ARCH-102/2012-13 2012 MATHEMATICS - I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

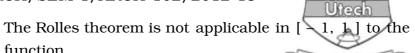
GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) If
$$y = ax^n + b$$
 then $y_{n+1} =$


a) n!

b) n!a

c) 0

- d) 1.
- ii) nth derivative of sin (5x + 3) is
 - a) $5^n \cos(5x + 3)$
 - b) $5^n \sin\left(\frac{n\pi}{2} + 5x + 3\right)$
 - c) $15 \sin \left(\frac{n\pi}{2} + 5x + 3 \right)$
 - d) $-\sin(5x + 3)$.

1053 [Turn over

function

b)
$$x^2 + 1$$

In the Taylor's series expansion of f(x) the expression iv) $\frac{h^n}{n!} f^{(n)}(a + \theta h)$ is known as

Cauchy's remainder a)

- b) Rolles remainder
- c) Taylor's remainder
- d) Lagrange's remainder.
- If radius of curvature of a curve at (x $_{1},\ y$ $_{1}$) is ρ then v) what is the curvature of that curve at that point?

a)
$$\frac{1}{\rho}$$

- Angle between the curves $y = x^2 \& y = 2x$ is
 - 0° a)

c) 180°

- d) 270°.
- The sequence $\{(-1)^n\}$ is
 - a) convergent
- b) oscillatory
- divergent c)
- d) none of these.

1053

viii) The series $\sum \frac{1}{n^p}$ is convergent if

a) $p \ge 1$

b) p > 1

c) p < 1

- d) $p \le 1$
- ix) Rank of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ is
 - a) 0

b) 1

c) 2

- d) 3.
- x) The value of t for which the matrix $\begin{pmatrix} 2 & 0 & 1 \\ 5 & t & 3 \\ 0 & 3 & 1 \end{pmatrix}$ is

singular is

a) $\frac{3}{2}$

b) 2

c) 1

- d) $\frac{1}{3}$.
- xi) The equation x + y + z = 0 has
 - a) Infinite number of solutions
 - b) No solution
 - c) Unique solutions
 - d) Two solutions.

1053

3

[Turn over

(Short Answer Type Questions)

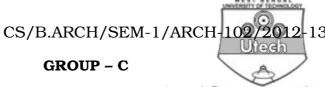
Answer any three of the following.

2. State Lagrange's mean value theorem. Show that

$$\frac{x}{1+x} < \log_e (1+x) < x \text{ holds if } x > 0.$$

3. What is D'Alembert's ratio test. Use it to test the following series is convergent or not.

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \dots \infty$$


4. Prove that

$$\begin{vmatrix} b^{2} + c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2} + a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2} + b^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$

5. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -2 & 5 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}$

4

1053

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 6. a) If $y = \cos(ax + b)$ then find y_n 3
 - b) If $y = \log_e x$ and $y = \log_{10} x$ find the angle of intersection of these two curves at (1, 0).
 - c) Solve the given system of equations by matrix inversion method and Cramer's rule and veryfy that the solutions are same.

$$2x + 3y + z = 11$$

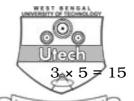
$$x + y + z = 6$$

$$5x - y + 10 z = 34$$
.

8

7. a) Test the convergence of the series

$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \frac{x^4}{17} + \frac{x^5}{26} + \dots \infty$$
, $(x > 0)$. 7


b) Find all the asymptotes of

$$xy^2 - y^2 - x^3 = 0.$$

OR

Find the envelope of the family of co-axial ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, given that $a^n + b^n = c^n$.

1053 5 [Turn over

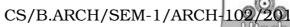
8. Answer any three:

- a) State Taylor's theorem with Lagrange form of remainder and Cauchy form of remainder.
- b) State Rolles theorem and verify Rolles theorem for $f(x) = |x| \text{ in } -1 \le x \le 1.$
- c) Prove that the series

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \frac{x^n}{n} + \dots = \infty$$
 is convergent when $|x| < 1$.

d) Prove that
$$\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = 8 abc.$$

9. a) Determine the conditions under which the system of equations


$$x + y + z = 1$$

$$x + 2y - z = b$$

$$5x + 7y + az = b^2$$

admits only one solution, no solution and many solutions.

1053

b) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$

Given that $a^2 + b^2 = c^2$.

4

c) Give the geometrical interpretations of Lagrange's Mean value theorem.

1053 7 [Turn over