	Utedh
Name:	
Roll No.:	In Passing (1/X) making 2nd Uniford
Invigilator's Signature :	•••••

CS/Int.PBR(PHY)/SEM-3/PHY-301/2010-11 2010-11

QUANTUM MECHANICS - III

Time Allotted: 3 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* of the following. $5 \times 10 = 50$

- 1. a) For the Dirac electron in a central potential show that $\stackrel{\varnothing}{L} = \stackrel{\varnothing}{r} \times \stackrel{\varnothing}{p}$ is not a constant of motion but $\stackrel{\varnothing}{L} + \frac{1}{2} \ \stackrel{\varnothing}{\hbar} \stackrel{\varnothing}{\Sigma}$. What is $\stackrel{\varnothing}{\Sigma}$? Argue that this corresponds to an intrinsic spin of $\frac{1}{2}$.
 - b) Show that the only component of \sum^{\emptyset} that commutes with the Dirac Hamiltonian of a free particle is the one along the momentum p.
- 2. Let ψ (x) and ψ' (x') be the Dirac wave functions in frames K and K' respectively.
 - a) Consider ψ (x) and ψ' (x') to be related by the linear transformation ψ' (x') = S (\bigwedge) ψ (x), where \bigwedge denotes the Lorentz transformation. Derive the conditions on S if the Dirac equation is to preserve its form in the two frames.

40602 [Turn over

CS/Int.PBR(PHY)/SEM-3/PHY-301/2010-11

- b) When \bigwedge denotes a space inversion, verify that the condition derived in (a) above is satisfied if one chooses $S(\bigwedge) = \gamma^0$.
- 3. Consider a no-nrelativistic spin $\frac{1}{2}$ particle.
 - a) Argue that one can postulate that the time reversal operator T must obey the condition $T\overset{\bigcirc}{S}T^{-1}=-\overset{\bigcirc}{S}$.
 - b) Given that the form $T=-i\sigma_y K$ (where K is the complex conjugation operator) satisfies the above condition. Show that $T^2=-1$.
 - c) Show that for a system of N spin $\frac{1}{2}$ particle $T^2 = (-1)^N$ and argue how this fact leads to Kramer's degeneracy.

10

4. The quantized electromagnetic field in Coulomb gauge is described by the vector potential

$$A\left(\begin{array}{c} \varnothing \\ r \end{array}, t \right) = \sum_{\bigotimes_{k\lambda}} \sqrt{\frac{2\pi \cdot c}{Vk}} \ \hat{e}_{\bigotimes_{k\lambda}} a_{\bigotimes_{k\lambda}} e^{i\left(\stackrel{\oslash}{k} \cdot \stackrel{\oslash}{r} - \omega t \right)} + H.c.$$

Generalize the classical definition of the momentum of the field, *viz.*,

$$\overset{\bigcirc}{P}_{cl} = \frac{1}{4\pi c} \int\limits_{V} \mathrm{d}\,^{3}r \overset{\bigcirc}{E} \propto \overset{\bigcirc}{B} \; ,$$

to the quantum domain. Show that the momentum operator can be expressed in the form,

$$\overset{\varnothing}{P} = \sum_{\overset{\varnothing}{k\lambda}} \overset{\dagger}{k} a_{k\lambda}^{\dagger} a_{k\lambda}^{\varnothing}$$

40602

- 5. Consider a single mode of the quantized electromagnetic field.
 - a) Calculate the photon number distribution, the mean and variance of the number operator in the coherent state.
 - b) Argue how the coherent state allows one to make a transition from the quantum to the classical description of the electromagnetic fields.
- 6. Consider a non-relativistic free electron interacting with the quantized electromagnetic field via the interaction Hamiltonian $H_1 = -\frac{e}{mc} \stackrel{\frown}{A} . \stackrel{\frown}{p}$, where $-\stackrel{\frown}{p}$ denotes the momentum operator of the electron. Consider the field to be in the vacuum state.

 - b) Sum over all final states by going to the continuum limitand show that this shift is linearly divergent.

CS/Int.PBR(PHY)/SEM-3/PHY-301/2010-11

- 7. Consider an atom (in the excited state |e® interacting with the quantized electromagnetic field (in the vacuum state) and undergoing spontaneous emission to the ground state |g®. Consider the eletric dipole interaction Hamiltonian $H_1 = -\stackrel{\frown}{a} \cdot \stackrel{\frown}{E}$.
 - a) Use the Fermi golden rule to calculate the spontaneous emission rate.
 - b) Obtain an explicit expression by summing over all final states in the continuum limit.

40602 4