	Uteah
Name:	(4)
Roll No.:	A Design of Executing and Explana
Inviailator's Signature :	

CS/INT.PBIR(PHY)/SEM-2/PHY-203/2010 2010

QUANTUM MECHANICS - II

Time Allotted: 3 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions.

All questions carry equal marks.

- 1. For a 2-dimensional simple harmonic oscillator acted upon by a perturbation $V(x, y) = \alpha xy$, find the lowest order non-vanishing corrections to the energies of the ground state and the first excited state. Compare with the exact results.
- 2. For a hydrogen atom in a constant electric fiedl **Error!**
- 3. Using [$J^{~2}~$, [$J^{~2}~$, $V_i~$]] = $2\,\hbar^{~2}$ ($J^{~2}\,V_i+V_i\,J^{~2}$) $~-4\,\hbar^{~2}$ ($\overrightarrow{V}\cdot\overrightarrow{J}$) $~J_i$ for any vector operator $V_i~$, show that

$$< jm^l \ \mid \ V_i \ \mid jm > \ = \ < j \ \mid \ \mid \ V^{(1)} \ \mid \ \mid j > \ < jm^l \ \mid \ J_i \ \mid jm >$$

for some constant $< j \mid \mid V^{(1)} \mid \mid j> \text{ independent of } m,m^{l}$.

30136 (INT.PBIR)

[Turn over

CS/INT.PBIR(PHY)/SEM-2/PHY-203/2010

$$\psi(r_1, r_2) = \psi_{100}(r_1) \psi_{100}(r_2)$$
with $\psi_{100}(r) = \frac{2}{\sqrt{4\pi}} \left(\frac{z}{a_0}\right)^{3/2} e^{-z_r/a_0}$

find the expectation value of the interaction energy

$$\frac{e^2}{|r_1 - r_2|}$$

5. For transitions from an initial state $|i\rangle$ at time $t\to -\infty$ to a final state $|f\rangle$ at time $t\to +\infty$ derive Fermi's golden rule for the rate of transition

$$R_{i \to f} = \frac{2\pi}{\cdot} \delta (E_f - E_i) | \langle f | H_I | i \rangle |^2$$

were $\mid i >$, $\mid f >$ are eigenstates of the free Hamiltonian and H_I does not depend explicitly on time.

6. For scattering from a 'hard sphere" potential

$$V(r) = 0, r > a$$
$$= \infty, r < a$$

find an expression for the partial wave phase shift δ_l . Show that for some values of the incident energy, the l=0 states do not "see" the sphere. Calculate δ_l in the limits of very high and very low incident energies.

7. For scattering from a potential

$$V = V_0$$
, $r < a$

$$=0$$
, $r>a$

Calculate the phase shift δ_0 . Considering $\mid V_0 \mid << E$ relate the sign of the phase shift to the potential being attractive or repulsive.

8. Given two electrons in a constant magnetic field, ignore all other dynamics but the spin-magnetic interaction. Write the canonical density matrix ρ and the thermodynamic entropy $S = -k \quad Tr \ \rho \log \ \rho \text{where} \quad k \text{ is the Boltzmann constant.}$ Calculate < H > by explicitly evaluating $Tr \ (\rho H)$ and also from $-\frac{\partial}{\partial \beta} \quad Tr \ (e^{-\beta H})$.